2 research outputs found

    Van der Waals Epitaxy of Weyl-Semimetal T<b><sub>d</sub></b>ā€‘WTe<sub><b>2</b></sub>

    No full text
    Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ā‰ƒ110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorovā€“Johnsonā€“Mehā€“Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 Ā± 0.5 Ɨ 1012 cmā€“2 for each electron pocket

    High Spin Polarization at Ferromagnetic Metalā€“Organic Interfaces: A Generic Property

    No full text
    A high spin polarization of states around the Fermi level, <i>E</i><sub>F</sub>, at room temperature has been measured in the past at the interface between a few molecular candidates and the ferromagnetic metal Co. Is this promising property for spintronics limited to these candidates? Previous reports suggested that certain conditions, such as strong ferromagnetism, i.e., a fully occupied spin-up d band of the ferromagnet, or the presence of Ļ€ bonds on the molecule, i.e., molecular conjugation, needed to be met. What rules govern the presence of this property? We have performed spin-resolved photoemission spectroscopy measurements on a variety of such interfaces. We find that this property is robust against changes to the molecule and ferromagnetic metalā€™s electronic properties, including the aforementioned conditions. This affirms the generality of highly spin-polarized states at the interface between a ferromagnetic metal and a molecule and augurs bright prospects toward integrating these interfaces within organic spintronic devices
    corecore