39 research outputs found

    Eye Development under the control of SRp55/B52-Mediated Alternative Splicing of eyeless

    Get PDF
    The genetic programs specifying eye development are highly conserved during evolution and involve the vertebrate Pax-6 gene and its Drosophila melanogaster homolog eyeless (ey). Here we report that the SR protein B52/SRp55 controls a novel developmentally regulated splicing event of eyeless that is crucial for eye growth and specification in Drosophila. B52/SRp55 generates two isoforms of eyeless differing by an alternative exon encoding a 60-amino-acid insert at the beginning of the paired domain. The long isoform has impaired ability to trigger formation of ectopic eyes and to bind efficiently Eyeless target DNA sequences in vitro. When over-produced in the eye imaginal disc, this isoform induces a small eye phenotype, whereas the isoform lacking the alternative exon triggers eye over-growth and strong disorganization. Our results suggest that B52/SRp55 splicing activity is used during normal eye development to control eye organogenesis and size through regulation of eyeless alternative splicing

    The SR Protein B52/SRp55 Is Required for DNA Topoisomerase I Recruitment to Chromatin, mRNA Release and Transcription Shutdown

    Get PDF
    DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression

    SURVEY AND SUMMARY Regulated functional alternative splicing in Drosophila

    No full text
    Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing

    Control of poly(A) polymerase level is essential to cytoplasmic polyadenylation and early development in Drosophila

    No full text
    Poly(A) polymerase (PAP) has a role in two processes, polyadenylation of mRNA precursors in the nucleus and translational control of certain mRNAs by cytoplasmic elongation of their poly(A) tails, particularly during early development. It was found recently that at least three different PAP genes exist in mammals, encoding several PAP isoforms. The in vivo specificity of function of each PAP isoform currently is unknown. Here, we analyse PAP function in Drosophila. We show that a single PAP isoform exists in Drosophila that is encoded by the hiiragi gene. This single Drosophila PAP is active in specific polyadenylation in vitro and is involved in both nuclear and cytoplasmic polyadenylation in vivo. Therefore, the same PAP can be responsible for both processes. In addition, in vivo overexpression of PAP does not affect poly(A) tail length during nuclear polyadenylation, but leads to a dramatic elongation of poly(A) tails and a loss of specificity during cytoplasmic polyadenylation, resulting in embryonic lethality. This demonstrates that regulation of the PAP level is essential for controlled cytoplasmic polyadenylation and early development

    Modulation of Yorkie activity by alternative splicing is required for developmental stability

    No full text
    The mechanisms that contribute to developmental stability are barely known. Here we show that alternative splicing of yorkie ( yki ) is required for developmental stability in Drosophila . Yki encodes the effector of the Hippo pathway that has a central role in controlling organ growth and regeneration. We identify the splicing factor B52 as necessary for inclusion of yki alternative exon 3 that encodes one of the two WW domains of Yki protein. B52 depletion favors expression of Yki1 isoform carrying a single WW domain, and reduces growth in part through modulation of yki alternative splicing. Compared to the canonical Yki2 isoform containing two WW domains, Yki1 isoform has reduced transcriptional and growth-promoting activities, decreased binding to PPxY-containing partners, and lacks the ability to bridge two proteins containing PPxY motifs. Yet, Yki1 and Yki2 interact similarly with transcription factors and can thus compete in vivo . Strikingly, flies deprived from Yki1 isoform exhibit increased fluctuating wing asymmetry, a signal of increased developmental noise. Our results identify yki alternative splicing as a new level of control of the Hippo pathway and provide the first experimental evidence that alternative splicing participates in developmental robustness

    The gp 130 family cytokines IL-6, LIF and OSM but not IL-11 can reverse the anti-proliferative effect of dexamethasone on human myeloma cells

    No full text
    International audienceIn order to understand the mechanisms supporting steroid escape in patients with multiple myeloma (MM), three IL-6 autocrine human myeloma cell lines, LP1, OPM2 and L363, have been treated with dexamethasone in the presence or absence of cytokines belonging to the gp 130 family: IL-6, LIF, OSM and IL-11. With pharmacological doses of dexamethasone, a dramatic growth arrest was observed in all the cell lines. IL-6 completely reversed this inhibition. Of note, this IL-6 induced reversion was still seen with very low amounts of IL-6 (12 pg/ml). Finally, whereas LIF and OSM had clear growth-promoting effects on OPM2 only, both cytokines (but not IL-11) reversed the dexamethasone-induced growth arrest in all the cell lines. Therefore the high levels of IL-6 (ng/ml) observed in the MM intermediate milieu and the putative presence of LIF and OSM can easily counteract the effects of dexamethasone in vivo

    The gp 130 family cytokines IL-6, LIF and OSM but not IL-11 can reverse the anti-proliferative effect of dexamethasone on human myeloma cells

    No full text
    International audienceIn order to understand the mechanisms supporting steroid escape in patients with multiple myeloma (MM), three IL-6 autocrine human myeloma cell lines, LP1, OPM2 and L363, have been treated with dexamethasone in the presence or absence of cytokines belonging to the gp 130 family: IL-6, LIF, OSM and IL-11. With pharmacological doses of dexamethasone, a dramatic growth arrest was observed in all the cell lines. IL-6 completely reversed this inhibition. Of note, this IL-6 induced reversion was still seen with very low amounts of IL-6 (12 pg/ml). Finally, whereas LIF and OSM had clear growth-promoting effects on OPM2 only, both cytokines (but not IL-11) reversed the dexamethasone-induced growth arrest in all the cell lines. Therefore the high levels of IL-6 (ng/ml) observed in the MM intermediate milieu and the putative presence of LIF and OSM can easily counteract the effects of dexamethasone in vivo
    corecore