7 research outputs found
GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-β signaling
Summary: Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (FoxP3) control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs) has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ), a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg), associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production. : Peripherally induced Treg cells (pTreg) are generated outside of the thymus and regulate responses to foreign antigens. In this manuscript, Riccardi and colleagues demonstrate that glucocorticoid-induced protein GILZ controls generation of pTreg cells and colon homeostasis. GILZ promotes TGF-β-induced phosphorylation of Smad2 and the expression of FoxP3. Thus, GILZ mediates a synergy between glucocorticoids and TGF-β in pTreg cell induction. GILZ is essential for Treg induction by glucocorticoids and their anti-inflammatory activity
Recombinant long-Glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in gilz KO spermatogonia
No genes are yet directly implicated in etiology of male infertility. Identification of genes critical at various stages of spermatogenesis is pivotal for the timely diagnostic and treatment of infertility. We previously found that L-GILZ deficiency in a mouse KO model leads to hyperactivation of Ras signaling and increased proliferation in spermatogonia, resulting in male sterility.
The possibility to establish culture cell system that maintains spermatogonial cells in vitro allowed us to delivery a recombinant protein TAT-L-GILZ able to restore normal proliferation rate in gilz KO spermatogonia. We also found that N-terminal part of L-GILZ protein is responsible for Ras/L-GILZ protein-to-protein interaction, important for the control of proliferation rate of spermatogonia. Therefore, treatments increasing L-GILZ expression, such as delivering small molecules or peptides that mimic L-GILZ functions, are approaches with great potential of applicability for new therapeutic strategies based on gene/protein delivery to the affected testes
Recombinant long-glucocorticoid-induced leucine zipper (L-GILZ) protein restores the control of proliferation in <i>gilz</i> KO spermatogonia
No genes are yet directly implicated in etiology of male infertility. Identification of genes critical at various stages of spermatogenesis is pivotal for the timely diagnostic and treatment of infertility. We previously found that L-GILZ deficiency in a mouse KO model leads to hyperactivation of Ras signaling and increased proliferation in spermatogonia, resulting in male sterility.
The possibility to establish culture cell system that maintains spermatogonial cells in vitro allowed us to delivery a recombinant protein TAT-L-GILZ able to restore normal proliferation rate in gilz KO spermatogonia. We also found that N-terminal part of L-GILZ protein is responsible for Ras/L-GILZ protein-to-protein interaction, important for the control of proliferation rate of spermatogonia. Therefore, treatments increasing L-GILZ expression, such as delivering small molecules or peptides that mimic L-GILZ functions, are approaches with great potential of applicability for new therapeutic strategies based on gene/protein delivery to the affected testes.</br
Wnt/β-Catenin Signaling Induces Integrin α4β1 in T Cells and Promotes a Progressive Neuroinflammatory Disease in Mice
Abstract
The mechanisms leading to autoimmune and inflammatory diseases in the CNS have not been elucidated. The environmental triggers of the aberrant presence of CD4+ T cells in the CNS are not known. In this article, we report that abnormal β-catenin expression in T cells drives a fatal neuroinflammatory disease in mice that is characterized by CNS infiltration of T cells, glial activation, and progressive loss of motor function. We show that enhanced β-catenin expression in T cells leads to aberrant and Th1-biased T cell activation, enhanced expression of integrin α4β1, and infiltration of activated T cells into the spinal cord, without affecting regulatory T cell function. Importantly, expression of β-catenin in mature naive T cells was sufficient to drive integrin α4β1 expression and CNS migration, whereas pharmacologic inhibition of integrin α4β1 reduced the abnormal T cell presence in the CNS of β-catenin–expressing mice. Together, these results implicate deregulation of the Wnt/β-catenin pathway in CNS inflammation and suggest novel therapeutic strategies for neuroinflammatory disorders