118 research outputs found

    FAK goes nuclear to control anti-tumor immunity – a new target in cancer immuno-therapy

    Get PDF
    Evading the antitumor immune response is important for the survival and progression of cancer. Recently, we identified an unexpected role for nuclear Focal Adhesion Kinase (FAK) activity in the control of tumor Treg levels and immune evasion by regulating chemokine and cytokine transcription in cancer cells. We proposed a potentially new purpose for FAK kinase inhibitors, which can cause immune-mediated tumor regression

    Phenotypic manipulation of normal and malignant brain cells

    Get PDF
    In this investigation several questions were posed about expression of differentiated and malignancy-associated properties in cell cultures derived from grades III and IV anaplastic astrocytomas. For comparison, cells derived from normal adult post-mortem brain and foetal brain, were also investigated. Characterisation studies were complicated by the absence of the astrocyte-specific protein, GFAP from the normal adult cultures and many of the gliomas. Other groups of workers have demonstrated that both normal glia-(278) and glioma-(110) derived cultures can lose GFAP as a result of in vitro growth. In the case of the malignant cells, the loss of cellular differentiation could also be the result of in vitro neoplasia. GFAP positive glioma cultures were presumed to contain highly differentiated astrocytoma cells, whereas GFAP negative cultures probably contained less well differentiated or more anaplastic cells. Biochemical investigation led to the hypothesis that the flat polygonal cells obtained in cultures from normal adult brain tissue were percursor glial cells or glioblasts. The malignant cell lines represented a gradation in states of biochemical, astroglial differentiation. The degree of differentiation exhibited by a particular cell line was not related to the pathological state of the tumour from which it was derived. The foetal cultures contained apparently mature, highly differentiated astroglia and were found to be pheno-typically stable, relative to the normal adult and malignant cultures, in response to environmental changes. The accumulation of immunological and biochemical data for many cell lines led to the postulation of a possible astroglial precursor pathway. Investigating the relationship between differentiated and malignancy-associated properties, required the development of assays to represent marker properties. GFAP, high affinity GABA uptake and glutamine synthetase were chosen to represent expression of the differentiated astroglial phenotype and plasminogen activator and tumour angiogenesis factor (or endothelial cell mitogenesis), the malignancy associated phenotype. The effects of varying the microenvironment of the cells in culture were investigated in a number of ways. Increasing cell density, dramatically increased the expression of GFAP in C6 cultures and high affinity GABA uptake in many cell lines, at the onset of confluence. As these differentiated properties were stimulated, the production of PA in malignant cell lines was dramatically reduced; possible explanations for the observed effects with changing cell density were put forward in terms of the proliferative state of cells and the formation of cell-cell contacts. Experiments with heterologous co-cultures and high density perfusion cultures, further demonstrated the importance of cell-cell contacts in the expression of differentiation. The effects of exposing neoplastic cells to various chemical agents were also investigated. Some of the agents upset the balance between differentiated and malignancy-associated properties. In particular dexamethasone, pig brain extract and interferon pushed the phenotypic expression of malignant cells in the direction of more mature, differentiated astroglia, at the same time reducing expression of the malignancy- associated properties. The tumour promoting phorbol ester, TPA, effectively pushed the balance of phenotypic expression in the direction of malignancy, as determined by in vitro criteria. The differentiated properties were unaffected by this agent. The DNA-alkylating carcinogens,mitomycin C and methylnitrosourea, both used clinically in the treatment of cancer, stimulated expression of both differentiated and malignancy-associated properties. The relevance of these findings in considering the growth and spread of tumours after chemotherapy, and possible new treatment procedures for malignant disease, are discussed

    Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement Insights from in vivo imaging

    Get PDF
    Recent advances in confocal and multi-photon microscopy, together with fluorescent probe development, have enabled cancer biology studies to go beyond the culture dish and interrogate cancer-associated processes in the complex in vivo environment. Regulation of the tumor suppressor protein E-cadherin plays an important role in cancer development and progression, and may contribute to the decision between ‘single cell’ and ‘collective invasion’ in vivo. Mounting evidence from in vitro and in vivo experiments places the two nonreceptor protein tyrosine kinases Src and Focal Adhesion Kinase at the heart of E-cadherin regulation and the crosstalk between integrins and cadherins. Here we discuss recent insights, attained using high-resolution fluorescent in vivo imaging, into the regulation of E-cadherin and collective invasion. We focus on the regulatory crosstalk between the Src/FAK signaling axis and E-cadherin in vivo

    FAK Deletion Promotes p53-Mediated Induction of p21, DNA-Damage Responses and Radio-Resistance in Advanced Squamous Cancer Cells

    Get PDF
    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics, polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK −/−), and reconstituted with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in combination with radiation, as this may not always be clinically advantageous

    The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes

    Get PDF
    Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology

    FAK regulates IL-33 expression by controlling chromatin accessibility at c-Jun motifs

    Get PDF
    Focal adhesion kinase (FAK) localizes to focal adhesions and is overexpressed in many cancers. FAK can also translocate to the nucleus, where it binds to, and regulates, several transcription factors, including MBD2, p53 and IL-33, to control gene expression by unknown mechanisms. We have used ATAC-seq to reveal that FAK controls chromatin accessibility at a subset of regulated genes. Integration of ATAC-seq and RNA-seq data showed that FAK-dependent chromatin accessibility is linked to differential gene expression, including of the FAK-regulated cytokine and transcriptional regulator interleukin-33 (Il33), which controls anti-tumor immunity. Analysis of the accessibility peaks on the Il33 gene promoter/enhancer regions revealed sequences for several transcription factors, including ETS and AP-1 motifs, and we show that c-Jun, a component of AP-1, regulates Il33 gene expression by binding to its enhancer in a FAK kinase-dependent manner. This work provides the first demonstration that FAK controls transcription via chromatin accessibility, identifying a novel mechanism by which nuclear FAK regulates biologically important gene expression

    Pathway profiling of a novel SRC inhibitor, AZD0424, in combination with MEK inhibitors

    Get PDF
    A more comprehensive understanding of how cells respond to drug intervention, the likely immediate signalling responses and how resistance may develop within different microenvironments will help inform treatment regimes. The nonreceptor tyrosine kinase SRC regulates many cellular signalling processes, and pharmacological inhibition has long been a target of cancer drug discovery projects. Here, we describe the in vitro and in vivo characterisation of the small‐molecule SRC inhibitor AZD0424. We show that AZD0424 potently inhibits the phosphorylation of tyrosine‐419 of SRC (IC50 ~ 100 nm) in many cancer cell lines; however, inhibition of cell viability, via a G1 cell cycle arrest, was observed only in a subset of cancer cell lines in the low (on target) micromolar range. We profiled the changes in intracellular pathway signalling in cancer cells following exposure to AZD0424 and other targeted therapies using reverse‐phase protein array (RPPA) analysis. We demonstrate that SRC is activated in response to treatment of KRAS‐mutant colorectal cell lines with MEK inhibitors (trametinib or AZD6244) and that AZD0424 abrogates this. Cell lines treated with trametinib or AZD6244 in combination with AZD0424 had reduced EGFR, FAK and SRC compensatory activation, and cell viability was synergistically inhibited. In vivo, trametinib treatment of mice‐bearing HCT116 tumours increased phosphorylation of SRC on Tyr419, and, when combined with AZD0424, inhibition of tumour growth was greater than with trametinib alone. We also demonstrate that drug‐induced resistance to trametinib is not re‐sensitised by AZD0424 treatment in vitro, likely as a result of multiple compensatory signalling mechanisms; however, inhibition of SRC remains an effective way to block invasion of trametinib‐resistant tumour cells. These data imply that SRC inhibition may offer a useful addition to MEK inhibitor combination strategies

    FAK and talin: Who is taking whom to the integrin engagement party?

    Get PDF
    In this issue, Lawson et al. provide new insight into the relationship between FAK and talin during assembly of integrin adhesions on fibronectin. They show that FAK is upstream of talin, and that talin is not required for FAK recruitment or for integrin activation at nascent adhesions. However, FAK-talin binding is required for adhesion turnover and cell motility. The findings question the view that talin is always upstream of focal adhesion protein recruitment to clustered integrin sites

    Nuclear FAK and Runx1 cooperate to regulate IGFBP3, cell cycle progression and tumor growth

    Get PDF
    Abstract Nuclear focal adhesion kinase (FAK) is a potentially important regulator of gene expression in cancer, impacting both cellular function and the composition of the surrounding tumor microenvironment. Here, we report in a murine model of skin squamous cell carcinoma (SCC) that nuclear FAK regulates Runx1-dependent transcription of insulin-like growth factor binding protein 3 (IGFBP3), and that this regulates SCC cell-cycle progression and tumor growth in vivo. Furthermore, we identified a novel molecular complex between FAK and Runx1 in the nucleus of SCC cells and showed that FAK interacted with a number of Runx1-regulatory proteins, including Sin3a and other epigenetic modifiers known to alter Runx1 transcriptional function through posttranslational modification. These findings provide important new insights into the role of FAK as a scaffolding protein in molecular complexes that regulate gene transcription. Cancer Res; 77(19); 5301–12. ©2017 AACR.</jats:p
    corecore