65 research outputs found

    FGF/heparin differentially regulates Schwann cell and olfactory ensheathing cell interactions with astrocytes: a role in astrocytosis

    Get PDF
    After injury, the CNS undergoes an astrocyte stress response characterized by reactive astrocytosis/proliferation, boundary formation, and increased glial fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycan (CSPG) expression. Previously, we showed that in vitro astrocytes exhibit this stress response when in contact with Schwann cells but not olfactory ensheathing cells (OECs). In this study, we confirm this finding in vivo by demonstrating that astrocytes mingle with OECs but not Schwann cells after injection into normal spinal cord. We show that Schwann cell-conditioned media (SCM) induces proliferation in monocultures of astrocytes and increases CSPG expression in a fibroblast growth factor receptor 1 (FGFR1)-independent manner. However, SCM added to OEC/astrocyte cocultures induces reactive astrocytosis and boundary formation, which, although sensitive to FGFR1 inhibition, was not induced by FGF2 alone. Addition of heparin to OEC/astrocyte cultures induces boundary formation, whereas heparinase or chlorate treatment of Schwann cell/astrocyte cultures reduces it, suggesting that heparan sulfate proteoglycans (HSPGs) are modulating this activity. In vivo, FGF2 and FGFR1 immunoreactivity was increased over grafted OECs and Schwann cells compared with the surrounding tissue, and HSPG immunoreactivity is increased over reactive astrocytes bordering the Schwann cell graft. These data suggest that components of the astrocyte stress response, including boundary formation, astrocyte hypertrophy, and GFAP expression, are mediated by an FGF family member, whereas proliferation and CSPG expression are not. Furthermore, after cell transplantation, HSPGs may be important for mediating the stress response in astrocytes via FGF2. Identification of factors secreted by Schwann cells that induce this negative response in astrocytes would further our ability to manipulate the inhibitory environment induced after injury to promote regeneration

    Burden of mild haemophilia A: Systematic literature review

    Get PDF
    Introduction Although the clinical manifestations of severe haemophilia A (HA) are well studied, the challenges, if any, of living with mild HA are not clearly delineated to date. Aim To assess available evidence of clinical risks and societal/economic impacts of disease in adult patients with mild HA using a systematic literature review. Methods Prespecified study selection criteria were applied in a comprehensive literature search. Included studies varied in design and reported outcomes of interest for adults (>= 13 years of age) with mild HA. Results Seventeen studies with a total of 3213 patients met eligibility criteria (published or presented in English, 1966-2017). Most studies were observational, and the outcomes reported were too sparse and dissimilar to support a formal meta-analysis. Mean annual bleeding rates ranged from 0.44 to 4.5 episodes per patient per year. Quality of life (QoL; SF-36 General Health) was impacted compared to healthy controls. Health care costs and productivity were seldom assessed and no robust comparisons to healthy controls were available. Conclusion Quantifying outcomes for adult patients with mild HA remains challenging, with estimates of key QoL and cost data often based on small data sets and without comparison to population norms. Therefore, the clinical impact of mild haemophilia may be under-represented and unmet needs may remain unaddressed. As paradigm-changing therapies for HA emerge, stronger knowledge of mild HA can guide the development of care options that minimize burden and enhance the QoL for this segment of the haemophilia community, and for the haemophilia community in totality

    Master collaboration: technology and assessment: research gaps, best practices, and future agenda

    Get PDF
    This session will review current research on the assessment center method. Topics will include AC validity and usefulness, proper design and application of the AC method through alignment with broader talent management strategies, differences in perspectives on focal constructs, and creating ACs to meet client needs while respecting current research

    Potential of legume-based grassland - livestock systems in Europe: a review

    Get PDF
    European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system, and these are most effective in mixed swards with a legume proportion of 30-50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future

    Advances in Agrobacterium-mediated plant transformation with enphasys on soybean

    Full text link

    Newest findings on the oldest oncogene; how activated src does it

    No full text
    Oncogenic forms of the non-receptor tyrosine kinase Src alter cell structure, in particular the actin cytoskeleton and the adhesion networks that control cell migration, and also transmit signals that regulate proliferation and cell survival. Recent work indicates that they do so by influencing the RhoA-ROCK pathway that controls contractile actin filament assembly, the STAT family of transcription factors needed for transformation, and the Cbl ubiquitin ligase that controls Src protein levels. These studies also shed light on the role of focal adhesion kinase (FAK) downstream of v-Src and other signalling pathways in controlling migration, invasion and survival of transformed cells. Src directly phosphorylates integrins and can also modulate R-Ras activity. Moreover, it stimulates the E-cadherin regulator Hakai, interacts with and phosphorylates the novel podosome-linked adaptor protein Fish, and progressively phosphorylates the gap junction component connexion 43. A recurring theme is the identification of novel and important Src substrates that mediate key biological events associated with transformation

    Newest findings on the oldest oncogene; how activated src does it

    No full text
    Oncogenic forms of the non-receptor tyrosine kinase Src alter cell structure, in particular the actin cytoskeleton and the adhesion networks that control cell migration, and also transmit signals that regulate proliferation and cell survival. Recent work indicates that they do so by influencing the RhoA-ROCK pathway that controls contractile actin filament assembly, the STAT family of transcription factors needed for transformation, and the Cbl ubiquitin ligase that controls Src protein levels. These studies also shed light on the role of focal adhesion kinase (FAK) downstream of v-Src and other signalling pathways in controlling migration, invasion and survival of transformed cells. Src directly phosphorylates integrins and can also modulate R-Ras activity. Moreover, it stimulates the E-cadherin regulator Hakai, interacts with and phosphorylates the novel podosome-linked adaptor protein Fish, and progressively phosphorylates the gap junction component connexion 43. A recurring theme is the identification of novel and important Src substrates that mediate key biological events associated with transformation

    Src in cancer: deregulation and consequences for cell behaviour

    No full text
    Considerable evidence now implicates elevated expression and/or activity of Src in cancer development. In cells, endogenous Src is switched from an inactive to an active state by a variety of mechanisms that simultaneously relieve constraints on the kinase and protein-interacting Src homology (SH) domains. As a result, Src is translocated to the cell periphery, often to sites of cell adhesion, where myristylation mediates attachment to the inner surface of the plasma membrane. From these peripheral sites, Src's catalytic activity initiates intracellular signal transduction pathways that influence cell growth and adhesion strength, the latter contributing to control of cell migration. De-regulation in cancer cells may therefore enhance tumour growth and/or stimulate migratory or invasive potential in cells that would normally be relatively non-motile. Evidence now exists to suggest that Src may also influence the life or death decisions that cells make during many biological processes. Thus, Src modulation in cancer cells can alter cell responses that are often perturbed in cancer. Consequently, there is optimism that drugs which inhibit Src's kinase activity, or the activity of its downstream effectors, might have profound effects on cancer cell behaviour and be useful therapeutic agents

    Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion

    No full text
    Integrin-linked focal adhesion complexes provide the main sites of cell adhesion to extracellular matrix and associate with the actin cytoskeleton to control cell movement. Dynamic regulation of focal adhesions and reorganization of the associated actin cytoskeleton are crucial determinants of cell migration. There are important roles for tyrosine kinases, extracellular signal-regulated protein kinase/mitogen-activated protein kinase signalling, and intracellular and extracellular proteases during actin and adhesion modulation. Dysregulation of these is associated with tumour cell invasion. In this article, we discuss established roles for these signalling pathways, as well as the functional interplay between them in controlling the migratory phenotype
    • 

    corecore