732 research outputs found
Curvature Effects in Gamma Ray Burst Colliding Shells
An elementary kinematic model for emission produced by relativistic spherical
colliding shells is studied. The case of a uniform blast-wave shell with jet
opening angle is considered, where is the
Lorentz factor of the emitting shell. The shell, with comoving width , is assumed to be illuminated for a comoving time
and to radiate a broken power-law spectrum peaking at comoving
photon energy \e_{pk,0}^{\prime}. Synthetic GRB pulses are calculated, and
the relation between energy flux and internal comoving energy density is
quantified. Curvature effects dictate that the measured flux at the
measured peak photon energy \e_{pk} is proportional to \e^3_{pk} in the
declining phase of a GRB pulse. Possible reasons for discrepancy with
observations are discussed, including adiabatic and radiative cooling processes
that extend the decay timescale, a nonuniform jet, or the formation of pulses
by external shock processes. A prediction of a correlation between prompt
emission properties and times of the optical afterglow beaming breaks is made
for a cooling model, which can be tested with Swift.Comment: 13 pages, 5 figures, added back-of-envelope estimate of curvature
relation, minor corrections, ApJ, in press, v. 614, 10 Oct 200
SN1998bw: The Case for a Relativistic Shock
SN1998bw shot to fame by claims of association with GRB980425. Independent of
its presumed association with a GRB, this SN is unusual in its radio
properties. A simple interpretation of the unusually bright radio emission
leads us to the conclusion that there are two shocks in this SN: a slow moving
shock containing most of the ejecta and a relativistic shock (Gamma=2) which is
responsible for the radio emission. This is the first evidence for the
existence of relativistic shocks in supernovae. It is quite plausible that this
shock may produce high energy emission (at early times and by inverse Compton
scattering). As with other supernovae, we expect radio emission at much later
times powered primarily by the slow moving ejecta. This expectation has
motivated us to continue monitoring this unusual SN.Comment: A&A (in press), Rome GRB Symposium, Nov. 199
A GMRT 150 MHz search for variables and transients in Stripe 82
We have carried out a dedicated transient survey of 300 deg2 of the SDSS Stripe 82 region using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz. Our multi-epoch observations, together with the TGSS survey, allow us to probe variability and transient activity on four different time-scales, beginning with 4 h and up to 4 yr. Data calibration, RFI flagging, source finding, and transient search were carried out in a semi-automated pipeline incorporating the SPAM recipe. This has enabled us to produce superior-quality images and carry out reliable transient search over the entire survey region in under 48 h post-observation. Among the few thousand unique point sources found in our 5σ single-epoch catalogues (flux density thresholds of about 24, 20, 16, and 18 mJy on the respective time-scales), we find <0.08 per cent, 0.01 per cent, <0.06 per cent, and 0.05 per cent to be variable (beyond a significance of 4σ and fractional variability of 30 per cent) on time-scales of 4 h, 1 d, 1 month, and 4 yr, respectively. This is substantially lower than that in the GHz sky, where ∼1 per cent of the persistent point sources are found to be variable. Although our survey was designed to probe a superior part of the transient phase space, our transient search did not yield any significant candidates. The transient (preferentially extragalactic) rate at 150 MHz is therefore <0.005 on time-scales of 1 month and 4 yr, and <0.002 on time-scales of 1 d and 4 h, beyond 7σ detection threshold. We put these results in perspective with the previous studies and give recommendations for future low-frequency transient surveys
A Radio Flare from GRB 020405: Evidence for a Uniform Medium Around a Massive Stellar Progenitor
We present radio observations of GRB 020405 starting 1.2 days after the
burst, which reveal a rapidly-fading ``radio flare''. Based on its temporal and
spectral properties, we interpret the radio flare as emission from the reverse
shock. This scenario rules out a circumburst medium with a radial density
profile \rho ~ r^{-2} expected around a mass-losing massive star, since in that
case the reverse shock emission decays on the timescale of the burst duration
t~100 s. Using published optical and X-ray data, along with the radio data
presented here, we further show that a self-consistent model requires
collimated ejecta with an opening angle of 6 degrees (t_j~0.95 days). As a
consequence of the early jet break, the late-time (t>10 days) emission measured
with the Hubble Space Telescope significantly deviates from an extrapolation of
the early, ground-based data. This, along with an unusually red spectrum, F_\nu
\~ \nu^{-3.9}, strengthens the case for a supernova that exploded at about the
same time as GRB 020405, thus pointing to a massive stellar progenitor for this
burst. This is the first clear association of a massive progenitor with a
uniform medium, indicating that a \rho ~ r^{-2} profile is not a required
signature, and in fact may not be present on the lengthscales probed by the
afterglow in the majority of bursts.Comment: Submitted to ApJ; 14 pages, 2 tables, 3 figure
Broad-band Modeling of GRB Afterglows
Observations of GRB afterglows ranging from radio to X-ray frequencies
generate large data sets. Careful analysis of these broad-band data can give us
insight into the nature of the GRB progenitor population by yielding such
information like the total energy of the burst, the geometry of the fireball
and the type of environment into which the GRB explodes. We illustrate, by
example, how global, self-consistent fits are a robust approach for
characterizing the afterglow emission. This approach allows a relatively simple
comparison of different models and a way to determine the strengths and
weaknesses of these models, since all are treated self-consistently. Here we
quantify the main differences between the broad-band, self-consistent approach
and the traditional approach, using GRB000301C and GRB970508 as test cases.Comment: Appears in "Gamma-Ray Bursts in the Afterglow Era" proceedings of the
Roma 2000 GRB Workshop; 3 pages; 2 figure
Constraints on Off-Axis GRB Jets in Type Ibc Supernovae From Late-Time Radio Observations
It has been suggested that the peculiar properties of the luminous Type Ic
supernova SN 1998bw and its low-energy gamma-ray burst GRB 980425 may be
understood if they originated in a standard gamma-ray burst explosion viewed
far from the axis of the relativistic jet. In this scenario, strong radio
emission is predicted from the jet on a timescale 1 to 10 years after the
explosion as it decelerates and spreads into our line of sight. To test this
hypothesis we have carried out late-time radio observations of SN 1998bw at
years, yielding upper limits which are consistent with the continued
fading of the supernova. We find these limits to be consistent with an off-axis
jet only if the progenitor mass loss rate is
M yr (for a wind velocity km s) or the
fraction of the shock energy in magnetic fields is . These values are low relative to those inferred for cosmological
GRBs. We combine the SN 1998bw measurements with existing observations for a
sample of 15 local Type Ibc supernovae to estimate that at most 6% produce
collimated, relativistic outflows.Comment: Revised version, as it appears in ApJ
The Angular Size and Proper Motion of the Afterglow of GRB 030329
The bright, nearby (z=0.1685) gamma-ray burst of 29 March 2003 has presented
us with the first opportunity to directly image the expansion of a GRB. This
burst reached flux density levels at centimeter wavelengths more than 50 times
brighter than any previously studied event. Here we present the results of a
VLBI campaign using the VLBA, VLA, Green Bank, Effelsberg, Arecibo, and
Westerbork telescopes that resolves the radio afterglow of GRB 030329 and
constrains its rate of expansion. The size of the afterglow is found to be
\~0.07 mas (0.2 pc) 25 days after the burst, and 0.17 mas (0.5 pc) 83 days
after the burst, indicating an average velocity of 3-5 c. This expansion is
consistent with expectations of the standard fireball model. We measure the
projected proper motion of GRB 030329 in the sky to <0.3 mas in the 80 days
following the burst. In observations taken 52 days after the burst we detect an
additional compact component at a distance from the main component of 0.28 +/-
0.05 mas (0.80 pc). The presence of this component is not expected from the
standard model.Comment: 12 pages including 2 figures, LaTeX. Accepted to ApJ Letters on May
14, 200
- …