3 research outputs found
Brominated flame retardants and natural organobrominated compounds in a vulnerable delphinid species along the Brazilian coast
Guiana dolphins, Sotalia guianensis, are vulnerable to extinction along their distribution on the Brazilian coast and assessing chemical pollution is of utmost importance for their conservation. For this study, 51 carcasses of Guiana dolphins were sampled across the Brazilian coast to investigate legacy and emerging brominated flame retardants (BFRs) as well as the naturally-produced MeO-BDEs. PBDEs and MeO-BDEs were detected in all samples analyzed, whereas emerging BFRs were detected in 16 % of the samples, all in Rio de Janeiro state. PBDE concentrations varied between 2.24 and 799 ng.g-1 lipid weight (lw), emerging BFRs between 0.12 and 1.51 ng.g-1 lw and MeO-BDEs between 3.82 and 10,247 ng.g-1 lw. Concentrations of legacy and emerging BFRs and natural compounds varied considerably according to the sampling site and reflected both the local anthropogenic impact of the region and the diversity/mass of biosynthesizers. The PBDE concentrations are lower than what was found for delphinids in the Northern Hemisphere around the same sampling period and most sampling sites presented mean concentrations lower than the limits for endocrine disruption known to date for marine mammals of 460 ng.g-1 lw, except for sampled from Santa Catarina state, in Southern Brazil. Conversely, MeO-BDE concentrations are higher than those of the Northern Hemisphere, particularly close to the Abrolhos Bans and Royal Charlotte formation, that are hotspots for biodiversity. Despite the elevated concentrations reported for this group, there is not much information regarding the effects of such elevated concentrations for these marine mammals. The distinct patterns observed along the Brazilian coast show that organobrominated compounds can be used to identify the ecological segregation of delphinids and that conservation actions should be planned considering the local threats.A.F. Azevedo and J. Lailson-Brito thank the National Council for Scientific and Technological Development (CNPq) for grants PQ-1B and 1D, respectively; and UERJ (Prociência). We thank the students from Aquatic Mammal and Bioindicator Lab (UERJ - Brazil), Environmental Chemistry Lab (CSIC - Spain) and Radioisotope Lab (UFRJ - Brazil). L.G. Vidal thanks the Coordination for the Improvement of Higher Education Personnel (CAPES - Finance Code 001) for providing her PhD grant. The authors thank the ICMBio - Estação Ecológica de Tamoios (ESEC Tamoios) and APA de Guapi-Mirim/ESEC da Guanabara for supporting the collection of carcasses in Ilha Grande Bay.Peer reviewe
Pyrethroid insecticides along the Southwestern Atlantic coast: Guiana dolphin (Sotalia guianensis) as a bioindicator
The presence of pyrethroid compounds in hepatic tissue of Guiana dolphins (Sotalia guianensis) is reported for the first time. Twelve pyrethroids were determined in 50 animals from eight locations of the Brazilian coast. The highest average concentration of total pyrethroids (∑PYR) was 1166 ng.g−1 lw, with values ranging from 148 to 5918 ng.g−1 lw, in Ilha Grande Bay, Rio de Janeiro State, while the Espírito Santo State had the highest median, 568 ng.g−1 lw. Permethrin was the predominant compound in most areas, contributing for 42% to 81% of the ∑PYR, whereas cypermethrin was the most abundant compound in Guanabara and Sepetiba bays (79% and 81%, respectively), both located in Rio de Janeiro State. Biological factors were not correlated with pyrethroids concentration. Tetramethrin and es/fenvalerate compounds were negatively correlated to the age, suggesting degradation/metabolization capacity in these animals that increases throughout life. Despite being metabolized and excreted, the wide use of these pollutants is reflected in relevant concentrations found in Guiana dolphins. This is the first study evaluating pyrethroids in a representative number of hepatic samples and covering >2600 km of coast. The overall lack of information on pyrethroids in cetaceans highlights the importance of understanding the profile and distribution of these pollutants in dolphins which exclusively inhabit the Southwestern Atlantic coast.This work was supported by the Spanish Ministry of Science and Innovation (Project CEX2018-000794-S) and by the Generalitat de Catalunya (Consolidated Research Group Water and Soil Quality Unit 2017 SGR 1404). The authors thank the Rio de Janeiro State Government Research Agency (FAPERJ) for financing part of this study. A.F. Azevedo, J. Lailson-Brito and T.L Bisi thank the National Council for Scientific and Technological Development (CNPq) for grants PQ-1B, 1C and 2, respectively; FAPERJ (CNE and JCNE, respectively) and UERJ (Prociência). We also thank the students from Aquatic Mammal and Bioindicator Lab (UERJ - Brazil), Environmental Chemistry Lab (CSIC - Spain) and Radioisotope Lab (UFRJ - Brazil). L.G.Vidal thanks the Coordination for the Improvement of Higher Education Personnel (CAPES - Finance Code 001) for providing her PhD grant.Peer reviewe