31 research outputs found

    Structural analysis of FAD synthetase from Corynebacterium ammoniagenes

    Get PDF
    Abstract Background The prokaryotic FAD synthetase family – a group of bifunctional enzymes that catalyse riboflavin phosphorylation and FMN adenylylation within a single polypeptide chain- was analysed in terms of sequence and structure. Results Sequences of nearly 800 prokaryotic species were aligned. Those related with bifunctional FAD synthetase activities showed conservation of several consensus regions and highly conserved residues. A 3D model for the FAD synthetase from Corynebacterium ammoniagenes (CaFADS) was generated. This model confirms that the N-terminal and C-terminal domains are related to nucleotydyltransferases and riboflavin kinases, respectively. Models for the interaction of CaFADS with its substrates were also produced, allowing location of all the protein substrates in their putative binding pockets. These include two independent flavin binding sites for each CaFADS activity. Conclusion For the first time, the putative presence of a flavin binding site for the adenylylation activity, independent from that related with the phosphorylation activity, is shown. Additionally, these models suggest the functional relevance of some residues putatively involved in the catalytic processes. Their relevant roles were analysed by site-directed mutagenesis. A role was confirmed for H28, H31, S164 and T165 in the stabilisation of the P groups and the adenine moiety of ATP and, the P of FMN for the adenylylation. Similarly, T208, N210 and E268 appear critical for accommodation of the P groups of ATP and the ribityl end of RF in the active site for the phosphorylation process. Finally, the C-terminal domain was shown to catalyse the phosphorylation process on its own, but no reaction at all was observed with the individually expressed N-terminal domain.</p

    Role of diffusible and transcription factors in inner ear development: implications in regeneration

    Get PDF
    Organogenesis involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. The development of the chicken embryo inner ear offers a well-characterised model at the morphological level to study which signals are implicated in the modulation of cellular activation and commitment. The early developmental decisions that control the origin of the inner ear elements are just beginning to be identified by complementary in vivo and in vitro studies. Insulin-like growth factor-I (IGF-I) and nerve growth factor (NGF) are among the best characterised diffusible factors acting during inner ear development. Although the cellular actions of these factors are beginning to be understood, the signalling pathways triggered by them still remain largely unknown. In this context, viral vehicles can be used to deliver genes and then analyse their functional roles during inner ear development. A model is proposed where the actions of IGF-I and NGF contribute to the combinatorial expression of Jun and Fos family members in particular domains of the otic vesicle. Some of these mechanisms may be also implicated in otic regeneration.This work was supported by grants from the Dirección General de Investigación Ciencia y Tecnología (PM96-0075 and Europharma (Boehringer Ingelheim Inc.) to I. V-N and the Junta de Castilla y León to F.G.Peer Reviewe

    Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist

    Get PDF
    Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer

    Maternal transmission of an Igf2r domain 11:IGF2 binding mutant allele (Igf2r <sup>I1565A</sup>) results in partial lethality, overgrowth and intestinal adenoma progression

    Get PDF
    The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding

    Understanding the FMN cofactor chemistry within the Anabaena Flavodoxin environment

    No full text
    10 pags., 7 figs., 3 tabs.The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1′-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP + reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58. © 2012 Elsevier B.V.This work has been supported by the Spanish Ministry of Science and Innovation (Grant BIO2010-1493 to M.M). Riboflavin analogues were agenerous gift from Dr. D. Edmondson. We thank Dr. R. Contreras for pro-viding with the algorithm for the determination of Fukui functions. I.L. isthe recipient of a JAE-CSIC fellowship associated to the Instituto Química-Física Rocasolano (CSIC)

    Programmed cell death in the developing inner ear is balanced by nerve growth factor and insulin-like growth factor I

    Get PDF
    12 pages, 6 figures, 4 tables.Nerve growth factor induces cell death in organotypic cultures of otic vesicle explants. This cell death has a restricted pattern that reproduces the in vivo pattern of apoptosis occurring during inner ear development. In this study, we show that binding of nerve growth factor to its low affinity p75 neurotrophin receptor is essential to achieve the apoptotic response. Blockage of binding to p75 receptor neutralized nerve-growth-factor-induced cell death, as measured by immunoassays detecting the presence of cytosolic oligonucleosomes and by TUNEL assay to visualize DNA fragmentation. Nerve growth factor also induced a number of cell-death-related intracellular events including ceramide generation, caspase activation and poly-(ADP ribose) polymerase cleavage. Again, p75 receptor blockade completely abolished all of these effects. Concerning the intracellular pathway, ceramide increase depended on initiator caspases, whereas its actions depended on both initiator and effector caspases, as shown by using site-specific caspase inhibitors. Conversely, insulin-like growth factor I, which promotes cell growth and survival in the inner ear, abolished apoptosis induced by nerve growth factor. Insulin-like growth factor cytoprotective actions were accomplished, at least in part, by decreasing endogenous ceramide levels and activating Akt. Taken together, these results strongly suggest that regulation of nerve-growth-factor-induced apoptosis in the otocysts occurs via p75 receptor binding and is strictly controlled by the interaction with survival signalling pathways.This work was supported in part by grants from Dirección General de Investigación, Ciencia y Tecnología (PM99-0111) to I. V-N and (PM99-0094) to E. J. de la R. L.M.F. was supported by Europharma (Boehringer Ingelheim Inc.), Y.L. held a CSIC research contract and S.C. was supported by the Comunidad de Madrid.Peer reviewe

    Crystallization and preliminary X-ray diffraction studies of FAD synthetase from Corynebacterium ammoniagenes

    No full text
    Native and selenomethionine-labelled FAD synthetase from C. ammoniagenes have been crystallized by the hanging-drop vapour-diffusion method. A MAD data set for SeMet-labelled FAD synthetase was collected to 2.42 Å resolution, while data sets were collected to 1.95 Å resolution for the native crystals

    Maternal transmission of a humanised Igf2r allele results in an Igf2 dependent hypomorphic and non-viable growth phenotype.

    Get PDF
    The cation independent mannose 6-phosphate/insulin-like growth factor 2 receptor (IGF2R) functions in the transportation and regulation of insulin-like growth factor 2 (IGF2) and mannose 6-phosphate modified proteins. The relative and specific titration of IGF2 by high affinity binding of IGF2R represents a mechanism that supports the parental conflict theory of genomic imprinting. Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele expressed) arose to regulate the relative supply of both proteins. Experiments in the mouse have established that loss of the maternal allele of Igf2r results in disproportionate growth and peri-natal lethality. In order to systematically investigate the consequences of loss of function and of hypomorphic alleles of Igf2r on growth functions, we introduced a conditional human IGF2R exon 3-48 cDNA into the intron 2 region of murine Igf2r. Here we show that the knock-in construct resulted in over-growth when the humanised Igf2r allele was maternally transmitted, a phenotype that was rescued by either paternal transmission of the humanised allele, expression of a wild-type paternal allele or loss of function of Igf2. We also show that expression of IGF2R protein was reduced to less than 50% overall in tissues previously known to be Igf2 growth dependent. This occurred despite the detection of mouse derived peptides, suggesting that trans-splicing of the knock-in human cDNA with the endogenous maternal mouse Igf2r allele. The phenotype following maternal transmission of the humanised allele resulted in overgrowth of the embryo, heart and placenta with partial peri-natal lethality, suggesting that further generation of hypomorphic Igf2r alleles are likely to be at the borderline of maintaining Igf2 dependent viability
    corecore