4 research outputs found

    Warp propagation in astrophysical discs

    Full text link
    Astrophysical discs are often warped, that is, their orbital planes change with radius. This occurs whenever there is a non-axisymmetric force acting on the disc, for example the Lense-Thirring precession induced by a misaligned spinning black hole, or the gravitational pull of a misaligned companion. Such misalignments appear to be generic in astrophysics. The wide range of systems that can harbour warped discs - protostars, X-ray binaries, tidal disruption events, quasars and others - allows for a rich variety in the disc's response. Here we review the basic physics of warped discs and its implications.Comment: To be published in Astrophysical Black Holes by Haardt et al., Lecture Notes in Physics, Springer 2015. 19 pages, 2 figure

    Comparison of industrial and scientific CFD approaches for predicting cross wind stability of the NGT2 model train geometry

    No full text
    Safety assessments of cross-wind influence on high-speed train operation require a detailed investigation of the aerodynamic forces acting on a vehicle. European norm 14067-6 permits the derivation of required integral force and moment coefficients by experiments as well as by numerical simulation. Utilizing the DLR’s Next Generation Train 2 model geometry, we have performed a case study comparing simulations with varying turbulence modeling assumptions. Because of its relevance for actual design, a focus lies on steady RANS computations, but more expensive unsteady RANS (URANS) and delayed detached eddy simulations (DDES) have also been carried out for comparison. Validation data for the exact same model configuration and moderate Reynolds numbers 250,000 and 450,000 is provided by side wind tunnel experiments. Particular emphasis is laid on simulating a yaw angle of 30º, for which a major vortex system on the leeward side of the train leads to sizeable uncertainties in predicted integral coefficients. At small to intermediate wind angles the flow remains attached and absolute errors in integral quantities decline with decreasing yaw angles. However, a consistent relative difference to the experimental results greater than 10% raises doubts about the general reliability of CFD methods, that are not capable of capturing laminar-turbulent transition, which is observed for scaled models in industry type wind tunnel experiments

    Assessment of the mesh refinement influence on the computed flow-fields about a model train in comparison with wind tunnel measurements

    No full text
    A consistent mesh refinement study, relating to the prediction of aerodynamic forces about an experimentally validated reference train geometry, is presented in this paper. The flow about a high-speed train has a multi-scale character which poses challenges for the design of computationally effective meshes. The purpose of this study is to assist in the development of guidelines for effective drag prediction of high-speed trains using numerical simulation. These guidelines should assist CFD practitioners by identifying the regions of the mesh that are critical for the correct estimation of drag as well as providing information on appropriate mesh characteristics, such as volume and surface element length scales. Numerical assessments are validated against an experimental drag measurement program and the extent to which RANS is sufficiently predictive for industrial design is discussed. The results obtained in the work suggest that the mesh about the train nose is essential for the proper assessment of the aerodynamic drag acting on the vehicle
    corecore