271 research outputs found

    Long-Term Stability Of Ethnocentric Consumer Attitudes

    Get PDF
    This research conducts the first cohort longitudinal study of the CETSCALE.  Data collected in surveys of Business Administration students in 2000, and the fall of 2005 and winter of 2006 are analyzed to determine whether the ethnocentric attitudes of consumers have changed.  Nonnormal distribution of the data due to kurtosis and severe skewness complicate confirmatory factor analysis, necessitating a three-phased effort to obtain an acceptable construct.  The results indicate that although the mean CETSCALE score decreased two points (from 45.2 to 43.2), the change was not significant at p = 0.05.  This research also confirms that the CETSCALE remains a highly reliable survey instrument, with Cronbach’s Alpha of 0.94 and Composite Reliability of 0.93.  Implications of this study for practitioners and the future study of consumer attitudes toward the purchase of imported products are also addressed

    Community, fortitude, satisfaction, and loyalty: Tests of Oliver\u27s proposed frameworks

    Get PDF
    This paper discusses tests of two competing loyalty frameworks proposed by Richard L. Oliver. The cognition to action (CTA) loyalty model specifies four phases: cognitive loyalty, affective loyalty, conative loyalty, and action loyalty, a framework originally discussed by Oliver. The fortitude-community (F-C) loyalty model argues that loyalty is a function of the degree of personal fortitude and the extent to which customers feel that they are members of a community of consumers. In both of these models loyalty is posited to arise from customer satisfaction. Research hypotheses are formulated that assert positive relationships between satisfaction and various loyalty constructs. The literature is consulted to formulate a CTA loyalty model and a F-C loyalty model. Two pilot studies were conducted to make a preliminary determination of the reliability and validity of the CTA and F-C loyalty models. Surveys of college of business administration undergraduates and credit union members provided preliminary indications that both loyalty models successful explain the constructs. Two formal empirical tests were also conducted to determine the reliability and validity of the CTA and F-C loyalty models. A survey of mall patrons found that the expected positive relationships between satisfaction and cognitive loyalty, cognitive loyalty and affective loyalty, and affective loyalty and conative loyalty were supported. A cross-cultural survey of U.S. and Mexican students majoring in business administration was also conducted. As expected, positive relationships between satisfaction and cognitive loyalty, cognitive loyalty and affective loyalty, and affective loyalty and conative loyalty were supported. Thus the CTA and F-C models are found to be reliable and valid, although not as originally envisioned by Oliver or the author. Limitations and future research directions are addressed

    Structural and Functional Determinants of γ-Secretase, an Intramembrane Protease Implicated in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-β peptides (Aβ) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-β precursor protein (APP) by β- and γ-secretases, with the latter being the founding member of a new class of intramembrane-cleaving proteases (I-CliPs) characterized by their intramembranous catalytic residues hydrolyzing the peptide bonds within the transmembrane regions of their respective substrates. These proteases include the S2P family of metalloproteases, the Rhomboid family of serine proteases, and two aspartyl proteases: the signal peptide peptidase (SPP) and γ-secretase. In sharp contrast to Rhomboid and SPP that function as a single component, γ-secretase is a multi-component protease with complex assembly, maturation and activation processes. Recently, two low-resolution three-dimensional structures of γ-secretase and three high-resolution structures of the GlpG rhomboid protease have been obtained almost simultaneously by different laboratories. Although these proteases are unrelated by sequence or evolution, they seem to share common functional and structural mechanisms explaining how they catalyze intramembrane proteolysis. Indeed, a water-containing chamber in the catalytic cores of both γ-secretase and GlpG rhomboid provides the hydrophilic environment required for proteolysis and a lateral gating mechanism controls substrate access to the active site. The studies that have identified and characterized the structural determinants critical for the assembly and activity of the γ-secretase complex are reviewed here

    The Alzheimer’s disease γ-secretase generates higher 42:40 ratios for β-amyloid than for p3 peptides

    Get PDF
    Alzheimer’s disease is characterized by intracerebral deposition of β-amyloid (Aβ). While Aβ40 is the most abundant form, neurotoxicity is mainly mediated by Aβ42. Sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases gives rise to full-length Aβ (Aβ1-x) and N-terminally truncated Aβ′ (Aβ11-x) whereas cleavage by α- and γ-secretases leads to the shorter p3 peptides (Aβ17-x). We uncovered significantly higher ratios of 42- versus 40-ending variants for Aβ and Aβ′ than for p3 secreted by mouse neurons and human induced pluripotent stem cell (iPSC)-derived neurons or produced in a cell-free γ-secretase assay with recombinant APP-CTFs. The 42:40 ratio was highest for Aβ′, followed by Aβ and then p3. Mass spectrometry analysis of APP intracellular domains revealed differential processing of APP-C83, APP-C89, and APP-C99 by γ-secretase already at the ε-cleavage stage. This mechanistic insight could aid in developing substrate-targeted modulators of APP-C99 processing to specifically lower the Aβ42:Aβ40 ratio without compromising γ-secretase function

    The adipocyte differentiation protein APMAP is an endogenous suppressor of Aβ production in the brain

    Get PDF
    The deposition of amyloid-beta (Aβ) aggregates in the brain is a major pathological hallmark of Alzheimer's disease (AD). Aβ is generated from the cleavage of C-terminal fragments of the amyloid precursor protein (APP-CTFs) by γ-secretase, an intramembrane-cleaving protease with multiple substrates, including the Notch receptors. Endogenous modulation of γ-secretase is pointed to be implicated in the sporadic, age-dependent form of AD. Moreover, specifically modulating Aβ production has become a priority for the safe treatment of AD because the inhibition of γ-secretase results in adverse effects that are related to impaired Notch cleavage. Here, we report the identification of the adipocyte differentiation protein APMAP as a novel endogenous suppressor of Aβ generation. We found that APMAP interacts physically with γ-secretase and its substrate APP. In cells, the partial depletion of APMAP drastically increased the levels of APP-CTFs, as well as uniquely affecting their stability, with the consequence being increased secretion of Aβ. In wild-type and APP/ presenilin 1 transgenic mice, partial adeno-associated virus-mediated APMAP knockdown in the hippocampus increased Aβ production by ∼20 and ∼55%, respectively. Together, our data demonstrate that APMAP is a negative regulator of Aβ production through its interaction with APP and γ-secretase. All observed APMAP phenotypes can be explained by an impaired degradation of APP-CTFs, likely caused by an altered substrate transport capacity to the lysosomal/autophagic syste

    Plasma appearance and correlation between coffee and green tea metabolites in human subjects

    Get PDF
    Coffee and green tea are two of the most widely consumed hot beverages in the world. Their respective bioavailability has been studied separately, but absorption of their respective bioactive phenolics has not been compared. In a randomised cross-over design, nine healthy subjects drank instant coffee and green tea. Blood samples were collected over 12h and at 24h to assess return to baseline. After green tea consumption, (−)-epigallocatechin (EGC) was the major catechin, appearing rapidly in the plasma; (−)-EGC gallate (EGCg) and (−)-epicatechin (EC) were also present, but (−)-EC gallate and C were not detected. Dihydroferulic acid and dihydrocaffeic acid were the major metabolites that appeared after coffee consumption with a long time needed to reach maximum plasma concentration, suggesting metabolism and absorption in the colon. Other phenolic acid equivalents (caffeic acid (CA), ferulic acid (FA) and isoferulic acid (iFA)) were detected earlier, and they peaked at lower concentrations. Summations of the plasma area under the curves (AUC) for the measured metabolites showed 1·7-fold more coffee-derived phenolic acids than green tea-derived catechins (P=0·0014). Furthermore, we found a significant correlation between coffee metabolites based on AUC. Inter-individual differences were observed, but individuals with a high level of CA also showed a correspondingly high level of FA. However, no such correlation was observed between the tea catechins and coffee phenolic acids. Correlation between AUC and maximum plasma concentration was also significant for CA, FA and iFA and for EGCg. This implies that the mechanisms of absorption for these two classes of compounds are different, and that a high absorber of phenolic acids is not necessarily a high absorber of catechin

    The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer's disease amyloid-beta peptides

    Get PDF
    Known gamma-secretase inhibitors or modulators display an undesirable pharmacokinetic profile and toxicity and have therefore not been successful in clinical trials for Alzheimer's disease (AD). So far, no compounds from natural products have been identified as direct inhibitors of gamma-secretase. To search for bioactive molecules that can reduce the amount of amyloid-beta peptides (A beta) and that have better pharmacokinetics and an improved safety profile, we completed a screen of similar to 400 natural products by using cell-based and cell-free gamma-secretase activity assays. We identified dihydroergocristine (DHEC), a component of an FDA-(Food and Drug Administration)-approved drug, to be a direct inhibitor of gamma-secretase. Micromolar concentrations of DHEC substantially reduced A beta levels in different cell types, including a cell line derived from an AD patient. Structure-activity relationship studies implied that the key moiety for inhibiting gamma-secretase is the cyclized tripeptide moiety of DHEC. A Surface Plasmon Resonance assay showed that DHEC binds directly to gamma-secretase and Nicastrin, with equilibrium dissociation constants (K-d) of 25.7 nM and 9.8 mu M, respectively. This study offers DHEC not only as a new chemical moiety for selectively modulating the activity of gamma-secretase but also a candidate for drug repositioning in Alzheimer's disease

    Shedding of neurexin 3β ectodomain by ADAM10 releases a soluble fragment that affects the development of newborn neurons.

    Get PDF
    Neurexins are transmembrane synaptic cell adhesion molecules involved in the development and maturation of neuronal synapses. In the present study, we report that Nrxn3β is processed by the metalloproteases ADAM10, ADAM17, and by the intramembrane-cleaving protease γ-secretase, producing secreted neurexin3β (sNrxn3β) and a single intracellular domain (Nrxn3β-ICD). We further completed the full characterization of the sites at which Nrxn3β is processed by these proteases. Supporting the physiological relevance of the Nrxn3β processing, we demonstrate in vivo a significant effect of the secreted shedding product sNrxn3β on the morphological development of adult newborn neurons in the mouse hippocampus. We show that sNrxn3β produced by the cells of the dentate gyrus increases the spine density of newborn neurons whereas sNrxn3β produced by the newborn neuron itself affects the number of its mossy fiber terminal extensions. These results support a pivotal role of sNrxn3β in plasticity and network remodeling during neuronal development

    The GPI transamidase complex of Saccharomyces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p

    Get PDF
    Gpi8p and Gaa1p are essential components of the GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. After solubilization in 1.5% digitonin and separation by blue native PAGE, Gpi8p is found in 430-650-kDa protein complexes. These complexes can be affinity purified and are shown to consist of Gaa1p, Gpi8p, and Gpi16p (YHR188c). Gpi16p is an essential N-glycosylated transmembrane glycoprotein. Its bulk resides on the lumenal side of the ER, and it has a single C-terminal transmembrane domain and a small C-terminal, cytosolic extension with an ER retrieval motif. Depletion of Gpi16p results in the accumulation of the complete GPI lipid CP2 and of unprocessed GPI precursor proteins. Gpi8p and Gpi16p are unstable if either of them is removed by depletion. Similarly, when Gpi8p is overexpressed, it largely remains outside the 430-650-kDa transamidase complex and is unstable. Overexpression of Gpi8p cannot compensate for the lack of Gpi16p. Homologues of Gpi16p are found in all eucaryotes. The transamidase complex is not associated with the Sec61p complex and oligosaccharyltransferase complex required for ER insertion and N-glycosylation of GPI proteins, respectively. When GPI precursor proteins or GPI lipids are depleted, the transamidase complex remains intact

    Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence.

    Get PDF
    Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients
    corecore