1,021 research outputs found

    Feedback control of probability amplitudes for two-level atom in optical field

    Get PDF
    We demonstrate the possibility to stabilize the probability amplitude of the upper level for a single quantum two-level atom in a classical optical field with feedback control scheme.Comment: 7 pages, 3 figure

    Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators

    Get PDF
    We consider networks of delay-coupled Stuart-Landau oscillators. In these systems, the coupling phase has been found to be a crucial control parameter. By proper choice of this parameter one can switch between different synchronous oscillatory states of the network. Applying the speed-gradient method, we derive an adaptive algorithm for an automatic adjustment of the coupling phase such that a desired state can be selected from an otherwise multistable regime. We propose goal functions based on both the difference of the oscillators and a generalized order parameter and demonstrate that the speed-gradient method allows one to find appropriate coupling phases with which different states of synchronization, e.g., in-phase oscillation, splay or various cluster states, can be selected.Comment: 8 pages, 7 figure

    Chaotic Observer-based Synchronization Under Information Constraints

    Full text link
    Limit possibilities of observer-based synchronization systems under information constraints (limited information capacity of the coupling channel) are evaluated. We give theoretical analysis for multi-dimensional drive-response systems represented in the Lurie form (linear part plus nonlinearity depending only on measurable outputs). It is shown that the upper bound of the limit synchronization error (LSE) is proportional to the upper bound of the transmission error. As a consequence, the upper and lower bounds of LSE are proportional to the maximum rate of the coupling signal and inversely proportional to the information transmission rate (channel capacity). Optimality of the binary coding for coders with one-step memory is established. The results are applied to synchronization of two chaotic Chua systems coupled via a channel with limited capacity.Comment: 7 pages, 6 figures, 27 reference

    Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints

    Full text link
    Output feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described and a theoretical analysis for multi-dimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the Passification Theorem. It is shown that the synchronization error exponentially tends to zero for sufficiantly high transmission rate (channel capacity). The results obtained for synchronization problem can be extended to tracking problems in a straightforward manner, if the reference signal is described by an {external} ({exogenious}) state space model. The results are applied to controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.Comment: 8 pages, 2 figure
    corecore