1,201 research outputs found

    On bipartite Rokhsar-Kivelson points and Cantor deconfinement

    Full text link
    Quantum dimer models on bipartite lattices exhibit Rokhsar-Kivelson (RK) points with exactly known critical ground states and deconfined spinons. We examine generic, weak, perturbations around these points. In d=2+1 we find a first order transition between a ``plaquette'' valence bond crystal and a region with a devil's staircase of commensurate and incommensurate valence bond crystals. In the part of the phase diagram where the staircase is incomplete, the incommensurate states exhibit a gapless photon and deconfined spinons on a set of finite measure, almost but not quite a deconfined phase in a compact U(1) gauge theory in d=2+1! In d=3+1 we find a continuous transition between the U(1) resonating valence bond (RVB) phase and a deconfined staggered valence bond crystal. In an appendix we comment on analogous phenomena in quantum vertex models, most notably the existence of a continuous transition on the triangular lattice in d=2+1.Comment: 9 pages; expanded version to appear in Phys. Rev. B; presentation improve

    Double point contact in Quantum Hall Line Junctions

    Full text link
    We show that multiple point contacts on a barrier separating two laterally coupled quantum Hall fluids induce Aharonov-Bohm (AB) oscillations in the tunneling conductance. These quantum coherence effects provide new evidence for the Luttinger liquid behavior of the edge states of quantum Hall fluids. For a two point contact, we identify coherent and incoherent regimes determined by the relative magnitude of their separation and the temperature. We analyze both regimes in the strong and weak tunneling amplitude limits as well as their temperature dependence. We find that the tunneling conductance should exhibit AB oscillations in the coherent regime, both at strong and weak tunneling amplitude with the same period but with different functional form.Comment: 4 pages, 3 figures; new version, edited text, 2 new references; figure 2 has been edited; new paragraph in page 1 and minor typos have been correcte

    Artificial electric field in Fermi Liquids

    Full text link
    Based on the Keldysh formalism, we derive an effective Boltzmann equation for a quasi-particle associated with a particular Fermi surface in an interacting Fermi liquid. This provides a many-body derivation of Berry curvatures in electron dynamics with spin-orbit coupling, which has received much attention in recent years in non-interacting models. As is well-known, the Berry curvature in momentum space modifies naive band dynamics via an artificial magnetic field in momentum space. Our Fermi liquid formulation completes the reinvention of modified band dynamics by introducing in addition an "artificial electric field", related to Berry curvature in frequency and momentum space. We show explicitly how the artificial electric field affects the renormalization factor and transverse conductivity of interacting U(1) Fermi liquids with non-degenerate bands. Accordingly, we also propose a method of momentum resolved Berry's curvature detection in terms of angle resolved photoemission spectroscopy (ARPES)

    Unconventional magnetism in imbalanced Fermi systems with magnetic dipolar interactions

    Full text link
    We study the magnetic structure of the ground state of an itinerant Fermi system of spin-\nicefrac{1}{2} particles with magnetic dipole-dipole interactions. We show that, quite generally, the spin state of particles depend on its momentum, i.e., spin and orbital degrees of freedom are entangled and taken separately are not ``good'' quantum numbers. Specifically, we consider a uniform system with non-zero magnetization at zero temperature. Assuming the magnetization is along zz-axis, the quantum spin states are kˇ\v{k}-dependent linear combinations of eigenstates of the σz\sigma_z Pauli matrix. This leads to novel spin structures in \textit{momentum space} and to the fact that the Fermi surfaces for ``up'' and ``down'' spins are not well defined. The system still has a cylindrical axis of symmetry along the magnetization axis. We also show that the self energy has a universal structure which we determine based on the symmetries of the dipolar interaction and we explicitly calculated it in the Hartree-Fock approximation. We show that the bare magnetic moment of particles is renormalized due to particle-particle interactions and we give order of magnitude estimates of this renormalization effect. We estimate that the above mentioned dipolar effects are small but we discuss possible scenarios where this physics may be realized in future experiments.Comment: 10 pages, 6 figures(2 subfigures); 4 appendices. Version published in Physical Review

    Ice: a strongly correlated proton system

    Full text link
    We discuss the problem of proton motion in Hydrogen bond materials with special focus on ice. We show that phenomenological models proposed in the past for the study of ice can be recast in terms of microscopic models in close relationship to the ones used to study the physics of Mott-Hubbard insulators. We discuss the physics of the paramagnetic phase of ice at 1/4 filling (neutral ice) and its mapping to a transverse field Ising model and also to a gauge theory in two and three dimensions. We show that H3O+ and HO- ions can be either in a confined or deconfined phase. We obtain the phase diagram of the problem as a function of temperature T and proton hopping energy t and find that there are two phases: an ordered insulating phase which results from an order-by-disorder mechanism induced by quantum fluctuations, and a disordered incoherent metallic phase (or plasma). We also discuss the problem of decoherence in the proton motion introduced by the lattice vibrations (phonons) and its effect on the phase diagram. Finally, we suggest that the transition from ice-Ih to ice-XI observed experimentally in doped ice is the confining-deconfining transition of our phase diagram.Comment: 12 pages, 9 figure

    Mapping the magneto-structural quantum phases of Mn3O4

    Full text link
    We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single crystal Mn3O4, which reveal the novel magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We observe a structural transition from tetragonal to monoclinic structures at the commensurate magnetic transition at T2=33K, show that the onset and nature of this structural transition can be controlled with an applied magnetic field, and find evidence for a field-tuned quantum phase transition to a tetragonal incommensurate or spin glass phase.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Lett; typos correcte

    Raman scattering studies of temperature- and field-induced melting of charge order in (La,Pr,Ca)MnO3_{3}

    Full text link
    We present Raman scattering studies of the structural and magnetic phases that accompany temperature- and field-dependent melting of charge- and orbital-order (COO) in La0.5Ca0.5MnO3 and La0.25Pr0.375Ca0.375MnO3. Our results show that thermal and field-induced COO melting in La0.5Ca0.5MnO3 exhibits three stages in a heterogeneous melting process associated with a structural change: a long-range, strongly JT distorted/COO regime; a coexistence regime; and weakly JT distorted/PM or FM phase. We provide a complete structural phase diagram of La0.5Ca0.5MnO3 for the temperature and field ranges 6<=T<=170 K and 0<=H<=9 T. We also investigate thermal and field-induced melting in La0.25Pr0.375Ca0.375MnO3 to elucidate the role of disorder in melting of COO. We find that while thermal melting of COO in La0.25Pr0.375Ca0.375MnO3 is quite similar to that in La0.5Ca0.5MnO3, the field-induced transition from the COO phase to the weakly JT-distorted/FM phase in La0.25Pr0.375Ca0.375MnO3 is very abrupt, and occurs at significantly lower fields (H~2 T at T~0 K) than in La0.5Ca0.5MnO3 (H~30 T at T=0 K). Moreover, the critical field H_c increases with increasing temperature in La0.25Pr0.375Ca0.375MnO3 in contrast to La0.5Ca0.5MnO3. To explain these differences, we propose that field-induced melting of COO in La0.25Pr0.375Ca0.375MnO3 is best described as the field-induced percolation of FM domains, and we suggest that Griffiths phase physics may be an appropriate theoretical model for describing the unusual temperature- and field- dependent transitions observed in La0.25Pr0.375Ca0.375MnO3.Comment: 14 pages, 8 figures, to be published in PR

    Theory of the nodal nematic quantum phase transition in superconductors

    Get PDF
    We study the character of an Ising nematic quantum phase transition (QPT) deep inside a d-wave superconducting state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1/N expansion, the transition is continuous. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle (qp) peaks in the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qp's remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak disorder. Some possible implications for cuprate physics are also discussed.Comment: 9 page, 4 figures, an error in one of expressions corrected and a new author was added. New references and footnotes are added and this is the version to appear in PR

    Monopole Condensation in full QCD using the Schroedinger Functional

    Get PDF
    We use a lattice thermal partition functional to study Abelian monopole condensation in full QCD with Nf=2N_f=2 staggered fermions. We present preliminary results on 163×416^3\times4 and 323×432^3\times4 lattices.Comment: Lattice2002(topology). 3 pages, 3 figure

    Chiral Symmetry Breaking and Confinement Beyond Rainbow-Ladder Truncation

    Full text link
    A non-perturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and provides a gauge independent description for dynamical chiral symmetry breaking (DCSB) and confinement has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics (QED) and quantum chromodynamics (QCD). In this paper, we demonstrate that the same simple and practical form of the vertex can achieve these objectives not only in 4-dimensional quenched QED (qQED4) but also in its 3-dimensional counterpart (qQED3). Employing this convenient form of the vertex \emph{ansatz} into the Schwinger-Dyson equation (SDE) for the fermion propagator, we observe that it renders the critical coupling in qQED4 markedly gauge independent in contrast with the bare vertex and improves on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent order parameters for confinement and DCSB in qQED3.Comment: 8 pages, 6 figure
    • …
    corecore