1,150 research outputs found

    The Matsubara-Fradkin Thermodynamical Quantization of Podolsky Electrodynamics

    Full text link
    In this work we apply the Matsubara-Fradkin formalism and the Nakanishi's auxiliary field method to the quantization of the Podolsky electrodynamics in thermodynamic equilibrium. This approach allows us to write consistently the path integral representation for the partition function of gauge theories in a simple manner. Furthermore, we find the Dyson-Schwinger-Fradkin equations and the Ward-Fradkin-Takahashi identities for the Podolsky theory. We also write the most general form for the polarization tensor in thermodynamic equilibrium.Comment: Submitted to Physical Review

    Three-point Green function of massless QED in position space to lowest order

    Full text link
    The transverse part of the three-point Green function of massless QED is determined to the lowest order in position space. Taken together with the evaluation of the longitudinal part in arXiv:0803.2630, this gives a relation for QED which is analogous to the star-triangle relation. We relate our result to conformal-invariant three-point functions.Comment: 8 page

    External leg amputation in conformal invariant three-point function

    Full text link
    Amputation of external legs is carried out explicitly for the conformal invariant three-point function involving two spinors and one vector field. Our results are consistent with the general result that amputing an external leg in a conformal invariant Green function replaces a field by its conformal partner in the Green function. A new star-triangle relation, involving two spinors and one vector field, is derived and used for the calculation.Comment: 16 pages; last paragraph added in Sec. 10, presentation improved, to appear in Eur. Phys. J.

    On the pathwidth of almost semicomplete digraphs

    Full text link
    We call a digraph {\em hh-semicomplete} if each vertex of the digraph has at most hh non-neighbors, where a non-neighbor of a vertex vv is a vertex u≠vu \neq v such that there is no edge between uu and vv in either direction. This notion generalizes that of semicomplete digraphs which are 00-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an hh-semicomplete digraph GG on nn vertices and a positive integer kk, in (h+2k+1)2knO(1)(h + 2k + 1)^{2k} n^{O(1)} time either constructs a path-decomposition of GG of width at most kk or concludes correctly that the pathwidth of GG is larger than kk. (2) We show that there is a function f(k,h)f(k, h) such that every hh-semicomplete digraph of pathwidth at least f(k,h)f(k, h) has a semicomplete subgraph of pathwidth at least kk. One consequence of these results is that the problem of deciding if a fixed digraph HH is topologically contained in a given hh-semicomplete digraph GG admits a polynomial-time algorithm for fixed hh.Comment: 33pages, a shorter version to appear in ESA 201

    Magnetized Type I Orbifolds in Four Dimensions

    Get PDF
    I review the basic features of four dimensional Z_2 x Z_2 (shift) orientifolds with internal magnetic fields, describing two examples with N=1 supersymmetry. As in the corresponding six-dimensional examples, D9-branes magnetized along four internal directions can mimic D5-branes, even in presence of multiplets of image branes localized on different fixed tori. Chiral low-energy spectra can be obtained if the model also contains D5-branes parallel to the magnetized directions.Comment: 4 pages, LATEX; misprints correcte

    Mapping the magneto-structural quantum phases of Mn3O4

    Full text link
    We present temperature-dependent x-ray diffraction and temperature- and field-dependent Raman scattering studies of single crystal Mn3O4, which reveal the novel magnetostructural phases that evolve in the spinels due to the interplay between strong spin-orbital coupling, geometric frustration, and applied magnetic field. We observe a structural transition from tetragonal to monoclinic structures at the commensurate magnetic transition at T2=33K, show that the onset and nature of this structural transition can be controlled with an applied magnetic field, and find evidence for a field-tuned quantum phase transition to a tetragonal incommensurate or spin glass phase.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Lett; typos correcte

    Chern-Simons theory, exactly solvable models and free fermions at finite temperature

    Full text link
    We show that matrix models in Chern-Simons theory admit an interpretation as 1D exactly solvable models, paralleling the relationship between the Gaussian matrix model and the Calogero model. We compute the corresponding Hamiltonians, ground-state wavefunctions and ground-state energies and point out that the models can be interpreted as quasi-1D Coulomb plasmas. We also study the relationship between Chern-Simons theory on S3S^3 and a system of N one-dimensional fermions at finite temperature with harmonic confinement. In particular we show that the Chern-Simons partition function can be described by the density matrix of the free fermions in a very particular, crystalline, configuration. For this, we both use the Brownian motion and the matrix model description of Chern-Simons theory and find several common features with c=1 theory at finite temperature. Finally, using the exactly solvable model result, we show that the finite temperature effect can be described with a specific two-body interaction term in the Hamiltonian, with 1D Coulombic behavior at large separations.Comment: 19 pages, v2: references adde

    Minimal conductivity in bilayer graphene

    Get PDF
    Using the Landauer formula approach, it is proven that minimal conductivity of order of e2/he^{2}/h found experimentally in bilayer graphene is its intrinsic property. For the case of ideal crystals, the conductivity turns our to be equal to e2/2he^{2}/2h per valley per spin. A zero-temperature shot noise in bilayer graphene is considered and the Fano factor is calculated. Its value 1−2/π1-2/\pi is close to the value 1/3 found earlier for the single-layer graphene.Comment: 3 pages, 1 figur

    Explicit construction of the classical BRST charge for nonlinear algebras

    Full text link
    We give an explicit formula for the Becchi-Rouet-Stora-Tyutin (BRST) charge associated with Poisson superalgebras. To this end, we split the master equation for the BRST charge into a pair of equations such that one of them is equivalent to the original one. We find the general solution to this equation. The solution possesses a graphical representation in terms of diagrams.Comment: 9 pages; v2,v3 minor corrections, references added for v
    • …
    corecore