29 research outputs found

    Improved Mos1-mediated transgenesis in C. elegans

    Get PDF
    Journal ArticleThe ability to add or delete genes to the genome of genetic model organisms is essential. Previously, we developed methods based on the Mos1 transposon1 to make targeted transgene insertions (Mos1-mediated Single Copy transgene Insertions, MosSCI2) and targeted deletions (Mos1-mediated deletions, MosDEL3) in Caenorhabditis elegans, the latter reported in your pages. Here, we present new reagents that improve the efficiency, facilitate the selection for transgenic strains and expand the set of MosSCI insertion sites

    Ammonium-Acetate Is Sensed by Gustatory and Olfactory Neurons in Caenorhabditis elegans

    Get PDF
    Background: Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH 4Ac). NH 4Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. Methodology/Main Findings: Here we show that over a range of concentrations NH4Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH4Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH4Cl) are not detected as Na + and Cl 2 specific stimuli, respectively. Conclusions/Significance: These findings clarify the behavioral response of C. elegans to NH4Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans

    MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline.

    Get PDF
    Here we describe a toolkit for the production of fluorescently tagged proteins in the C. elegans germline and early embryo using Mos1-mediated single copy insertion (MosSCI) transformation. We have generated promoter and 3'UTR fusions to sequences of different fluorescent proteins yielding constructs for germline expression that are compatible with MosSCI MultiSite Gateway vectors. These vectors allow tagged transgene constructs to be inserted as single copies into known sites in the C. elegans genome using MosSCI. We also show that two C. elegans heat shock promoters (Phsp-16.2 and Phsp-16.41) can be used to induce transgene expression in the germline when inserted via MosSCI transformation. This flexible set of new vectors, available to the research community in a plasmid repository, should facilitate research focused on the C. elegans germline and early embryo

    The Caenorhabditis elegans

    No full text
    corecore