54 research outputs found

    Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH) in vivo and in vitro.</p> <p>Methods</p> <p>The cerebrospinal fluid (CSF) of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay.</p> <p>Results</p> <p>CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6) and sticking (days 2-4) to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH.</p> <p>Conclusion</p> <p>We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.</p

    Modeling intracranial aneurysm stability and growth: An integrative mechanobiological framework for clinical cases

    Get PDF
    We present a novel patient-specific fluid-solid-growth framework to model the mechanobiological state of clinically detected intracranial aneurysms (IAs) and their evolution. The artery and IA sac are modeled as thick-walled, non-linear elastic fiber-reinforced composites. We represent the undulation distribution of collagen fibers: the adventitia of the healthy artery is modeled as a protective sheath whereas the aneurysm sac is modeled to bear load within physiological range of pressures. Initially, we assume the detected IA is stable and then consider two flow-related mechanisms to drive enlargement: (1) low wall shear stress; (2) dysfunctional endothelium which is associated with regions of high oscillatory flow. Localized collagen degradation and remodelling gives rise to formation of secondary blebs on the aneurysm dome. Restabilization of blebs is achieved by remodelling of the homeostatic collagen fiber stretch distribution. This integrative mechanobiological modelling workflow provides a step towards a personalized risk-assessment and treatment of clinically detected IAs

    Polychaete invader enhances resource utilization in a species-poor system

    Get PDF
    Ecosystem consequences of biodiversity change are often studied from a species loss perspective, while the effects of invasive species on ecosystem functions are rarely quantified. In this experimental study, we used isotope tracers to measure the incorporation and burial of carbon and nitrogen from a simulated spring phytoplankton bloom by communities of one to four species of deposit-feeding macrofauna found in the species-poor Baltic Sea. The recently invading polychaete Marenzelleriaarctia, which has spread throughout the Baltic Sea, grows more rapidly than the native species Monoporeia affinis, Pontoporeia femorata (both amphipods) and Macoma balthica (a bivalve), resulting in higher biomass increase (biomass production) in treatments including the polychaete. Marenzelleria incorporated and buried bloom material at rates similar to the native species. Multi-species treatments generally had higher isotope incorporation, indicative of utilization of bloom material, than expected from monoculture yields of the respective species. The mechanism behind this observed over-yielding was mainly niche complementarity in utilization of the bloom input, and was more evident in communities including the invader. In contrast, multi-species treatments had generally lower biomass increase than expected. This contrasting pattern suggests that there is little overlap in resource use of freshly deposited bloom material between Marenzelleria and the native species but it is likely that interference competition acts to dampen resulting community biomass. In conclusion, an invasive species can enhance incorporation and burial of organic matter from settled phytoplankton blooms, two processes fundamental for marine productivity

    Letter by Frösén and Lindgren Regarding Article, “Treatment Scoring of Unruptured Intracranial Aneurysms”

    No full text
    corecore