4 research outputs found

    La fonctionnalisation de surfaces par polymérisation plasme (une nouvelle stratégie d'élaboration de matériaux à pouvoir adhésif reversible)

    No full text
    La polymérisation plasma est un procédé très intéressant lorsque l on s intéresse aux problèmes d adhérence. Elle permet de transférer une même fonctionnalité sur tous types de substrats, notamment par plasma pulsé. Ce travail se base sur la polymérisation plasma pulsé de l anhydride maléique. Dans un premier temps, le procédé est optimisé grâce aux outils chimiométriques de telle sorte à obtenir un maximum de rétention des fonctions anhydride. Ensuite la réactivité de ces groupements anhydride incorporés dans le polymère est utilisée pour greffer des fonctions diène et diénophile à l aide de molécules nouvellement synthétisées. Cela permet d élaborer des interfaces intelligentes, capables d engendrer une adhésion forte et réversible via une réaction interfaciale de Diels-Alder entre les fonctions diène et diénophile respectivement immobilisées sur chacun des substrats.Pulsed plasma polymerization has become an useful candidate in all adhesion problems dealing with functionalized surfaces. This approach is very interesting because the plasmachemical surface functionalization step is substrate-independent. This study was focused on pulsed plasma polymerization of maleic anhydride. First of all, the plasma process was optimized using chemometric tools. Then, the anhydride groups reactivity was used to modify our plasma polymer with diene or dienophile groups using novel synthesized molecules. This leads to the design of smart interfaces between two surfaces respectively functionalized with diene and dienophile groups which undergo a reversible strong adhesion.MULHOUSE-SCD Sciences (682242102) / SudocSudocFranceF

    Changes in silicon elastomeric surface properties under stretching induced by three surface treatments.

    No full text
    International audiencePoly(dimethylsiloxane) (PDMS) substrates are used in many applications where the substrates need to be elongated and various treatments are used to regulate their surface properties. In this article, we compare the effect of three of such treatments, namely, UV irradiation, water plasma, and plasma polymerization, both from a molecular and from a macroscopic point of view. We focus our attention in particular on the behavior of the treated surfaces under mechanical stretching. UV irradiation induces the substitution of methyl groups by hydroxyl and acid groups, water plasma leads to a silicate-like layer, and plasma polymerization causes the formation of an organic thin film with a major content of anhydride and acid groups. Stretching induces cracks on the surface both for silicate-like layers and for plasma polymer thin coatings. This is not the case for the UV irradiated PDMS substrates. We then analyzed the chemical composition of these cracks. In the case of water plasma, the cracks reveal native PDMS. In the case of plasma polymerization, the cracks reveal modified PDMS. The contact angles of plasma polymer and UV treated surfaces vary only very slightly under stretching, whereas large variations are observed for water plasma treatments. The small variation in the contact angle values observed on the plasma polymer thin film under stretching even when cracks appear on the surface are explained by the specific chemistry of the PDMS in the cracks. We find that it is very different from native PDMS and that its structure is somewhere between Si(O2) and Si(O3). This is, to our knowledge, the first study where different surface treatments of PDMS are compared for films under stretching
    corecore