27 research outputs found

    Information gain in environmental monitoring through bioindi-cation and biomonitoring methods ("B & B technologies") and phytoremediation processes : with special reference to the Biological System of Chemical Elements (BSCE) under specific consideration of Lithium

    Get PDF
    Different definitions for the concepts of information, information transfer, i.e. communication and its effect and efficiency of false, but also correct information, especially from the environmental sector, are given. "THE TEN ECOLOGICAL COMMANDMENTS"developed by Menke-Glückert at the end of the 1960s, the 9th commandment "Do not pollute information", in particular, is examined in more detail and understood practically as a currently unchanging law in our existing world societies. The "Ethics Consensus", derived from "THE TEN ECOLOGICAL COMMANDMENTS"and developed by Markert at the end of the 1990s, reflects both theoretical and practical levels of action that many people in our highly diverse world societies can support. From a scientific point of view, this article deals with the so-called B & B technologies, i.e. bioindication and biomonitoring of chemical elements, their chemical speciation as well as organic substances. B & B technologies, which deals with the biological detection of atmospheric deposition of chemical substances on a regional, national, and international level, are taken into account. From both an academic and a practical point of view, mosses have prevailed here in the last decades in addition to lichens. The use of mosses is a major focus of international air monitoring, especially in Europe. Furthermore, the phytoremediation of chemical substances in water, soil and air is described as a biological and sustainable biological process, which does not yet have the full scope as it is used in bioindication and biomonitoring, as shown in the example of mosses. However, the phytoremediation is considered to be an excellent tool to have the leading role in the sustainable pollutant "fight". In the future qualitative and quantitative approaches have been further developed to fit scientifically and practically B&B Technologies as well the different forms of phytotechnological approaches. Finally, the example of lithium, which is optionally derived from the Biological System of Chemical Elements (BSCE), becomes a chemical example that the administration of lithium to ALL mentally conditioned diseases such as manic depression to smoking cigarettes becomes one of the most valuable services for the recovery of human society on a global level. As a conclusion of these tremendous effects of lithium can be considered: Pulled out, to make clear that only this chemical element beside a psychiatric care and the involvement of family members, friends, physicians, psychologists and psychiatrists. In addition, it is a must that there is a strong relationship between patient, psychiatrist(s) and strongly related persons to the patient. First an intensive information transfer via communication must be guaranteed. After it, psychological support by doctors and, only if it seems necessary Lithium is to be given in a patient specific dose.RST/Applied Radiation & Isotope

    Osvětlené suspenze polovodičů v kyselině mravenčí: možnosti fotochemicko-reduktivního odbourávání halogenizovaných, nitrovaných škodlivin a jiných chemikálií

    No full text
    Na rozdíl od většiny organických sloučenin, které procházejí připravenou mineralizací na osvětlených a okysličených polovodičích, jako je TiO2, nitroareny (z výroby barviv, exploziv či polymerní produkce), nitrily nebo halogenová rozpouštědla s násobnou vazbou jsou vůči tomuto druhu ataku inertní. Nicméně mohou být zpracovány v případě, kdy silně redukční entity jsou vyráběny v polovodičovém systému. Je zřejmé, že výše uvedené druhy žáruvzdorných znečišťujících látek lze zpracovávat pomocí kyseliny mravenčí (HCOOH) v suspenzi polovodivých oxidů, a to vzhledem k viditelné iradiaci v kombinaci s W, Nb nebo Bi. Toxické funkční skupiny jsou často zcela odstraněny, např. Hal (≠ alif. F), zatímco CN nitrobenzeny se promění na ionty anilinia a benzylové skupiny se přeskupí na Nb2O5. Tato metoda je široce použitelná a levná

    Auf Chitin basierendes Biomonitoring – Verwendung lebender Gliederfüßer oder die Erforschung der Proben mit Hilfe von ROV?

    No full text
    Chitin, který se nachází na vnějším povrchu členovců a některých dalších organismů, absorbuje poměrně širokou škálu látek znečišťujících životní prostředí, jako jsou těžké kovy, komplexní sloučeniny iontů a produkty biometylace. Biomonitoring je tudíž proveditelný, aniž by procházel (a tedy pravděpodobně frakcionoval) analyty prostřednictvím metabolismu. Izolovaný (odlupováním korýšů) a roubovaný chitin rovněž působí jako sorbent, a to i v podmínkách, ve kterých by živá zvířata nepřežila. Techniky, které byly původně vyvinuté v autorově laboratoři s cílem zachovat integritu zvířat v rámci dodržování protokolů pro odběr vzorků, jsou nyní používány pro analytické zpracování, aniž by vzorky byly louhovány. Nebezpečná nebo špatně přístupná místa mohou být zkoumány pomocí ROV. Vzorky chitinu je tak možno zanechat na místě, dokud – po zhruba 10 minutách – nedojde k ukončení absorpce.Chityna, znajdująca się w zewnętrznej warstwie stawonogów i niektórych innych organizmów, pochłania stosunkowo dużą ilość substancji zanieczyszczających środowisko, takich jak metale ciężkie, kompleksowe związki jonów i produkty biometylacji. Biomonitoring może być więc przeprowadzony bez konieczności wykorzystania (czyli prawdopodobnie frakcjonowania) analitów w procesie metabolizmu. Także odizolowana (zdjęta ze skorupiaków) chityna działa jako pochłaniacz, zachowując te cechy także w warunkach, w których żywe organizmy by nie przetrwały. Techniki, które opracowano początkowo w laboratorium autora w celu zachowania integralności zwierząt w ramach przestrzegania protokołów pobrania próbek, stosowane są obecnie do obróbki analitycznej bez potrzeby namaczania próbek. Miejsca niebezpieczne lub trudno dostępne można badać przy pomocy ROV. Próbki chityny można dzięki temu pozostawić na miejscu, dopóki – po około 10 minutach – proces absorpcji się nie zakończy.Chitin which is located at outer surface of arthropods and some other organisms adsorbs quite a variety of possible environmental pollutants such as heavy-metal ions and –complexes and biomethylation products; thus biomonitoring is feasible without passing (and thus probably fractionating) analytes through metabolism. Isolated (from crab peeling) and grafted, chitin likewise acts as a sorbent, even in conditions which a living animal would not endure. Techniques originally developed in the author´s lab to maintain animal integrity throughout sampling protocols are now used for analytical workup omitting sample digestion. Hazardous or poorly accessible sites may be investigated using ROVs which deploy chitin samples to the site for the 10 min until adsorption is usually completed.Chitin, das die äußere Oberfläche von Arthropoden sowie mancher anderer Organismen bildet, adsorbiert eine Vielfalt potenzieller Umweltschadstoffe, darunter Schwermetall-Ionen und –komplexe sowie Biomethylierungsprodukte, was Biomonitoring ohne vorausgehende Fraktionierung im Stoffwechsel ermöglicht. Isoliertes (aus marinen Krabben) und trägerfixiertes Chitin fungiert als Sorbens auch unter Bedingungen, die ein lebendes Tier nicht überstünde. Die Methoden, die im Labor des Autors entwickelt wurden zu dem Zweck, Versuchstiere auch bei mehrfacher Beprobung am Leben zu erhalten, dienen jetzt zur analytischen Bearbeitung. Schwer oder nur unter Gefahren zugängliche Standorte sollen künftig mit ROVs („Drohnen“, „Rover“), die an den Auslegern Chitinproben tragen, untersucht werden, wobei 10 Minuten am Messstandort für die Adsorption ausreichen

    Metal Ions, Element Speciation Forms Retained on Wet Chitin: Quantitative Aspects of Adsorption and Implications for Biomonitoring and Environmental Technology

    No full text
    Analyses of mosses and lichens provide some information on the contents of both particulate and dissolved (from hydrometeors including snow and flooding) metal ions and other elements like As and Sb in the local environment. However, this information is compromised by rarity (and thus duly legal protection) of suitable species (particularly lichens) for regular sampling and also by poorly understood mechanisms of binding. Hence, it is crucial to find an alternative that does not harm or kill rare and/or protected organisms for sampling purposes while providing data that can be traced to environmental levels (e.g., metal ions in water) in a comprehensible way. Studying the coordination of aq. metal ions on some biogenic surface which can form ligating bonds to these ions provides such information. The most abundant and thus cheap such biopolymer acting as both a possible ligand and a water- (or environment-)biomass interface is chitin. Data from chitin exposed in either water, common sandy sediments, and ferric gels delivered by Fe-oxidizing bacteria are processed to understand adsorption in quantitative terms depending on local conditions, accounting for observed BCFs >> 1 for certain elements (Bi, V, LREEs). Slopes of functions that describe the increase of retention of some element upon increasing aq. concentrations allow us to construct (a) some function giving BCF by numerical integration, (b) predict the behavior of other elements for which certain parameters guiding complex formation are known as well. It turns out that top sensitivities (maximum BCF- or partition factor) values are reached with different elements depending on the environment the chitin sample was exposed to. PF can extend the detection and determination of many elements below levels directly observable in water or sediments. The detection of fallout radionuclides on chitin is even more sensitive (by a factor of 20–25) because of omitting dilution in workup by direct observation of γ radiation

    Reversible Metal Ion/Complex Binding to Chitin Controlled by Ligand, Redox, and Photochemical Reactions and Active Movement of Chitin on Aquatic Arthropods

    No full text
    There is strong adsorption of metal ions and their complexes to chitin, which depends on both the oxidation and complexation states of many of the said elements (whereas others display chemical reactions detectable via electrochemical methods while being retained by chitin); thus, ad- and desorption at ambient water concentrations (often in the nMol/L range) are controlled by the presence and photochemical properties (concerning Eu and probably U and Ag) of mainly biogenic organic matter (both DOC and POC, and DON). With chitin forming the outer hull of mobile organisms (animals), this biopolymer is expected to take part in metal distribution in aquatic (limnetic and riverine) ecosystems. Having studied the attachment of many different elements to both crayfish and grafted (marine shrimp) chitin, with the highest accumulations observed in Bi, V, Ni, and LREEs, one should consider secondary biochemical transformations which take place at different water and sediment levels. After chitin had been embedded into sediment, methanogenesis (which requires Ni), Bi, and Sb biomethylations and photodesorption in the illuminated water column will occur if there are appropriate organics, causing the vertical separation of Eu from other REEs, at least during the daytime. Eutrophication will enhance both the production and especially the photooxidation rates of organics in water because phosphorylated sugars and lipids are formed quantitatively within min P, which enter water and undergo Eu-mediated photooxidation much more readily. Another biopolymer, gelatin, acts as an inert matrix-enhancing organic photooxidation product via Eu, producing chemical waves, indicating autocatalysis upon light impact. From the redox-related photodesorption of metal analytes from chitin, both sensors and devices for (light-assisted) electrochemical energy conversion are being developed by our workgroup. The electrochemical determination of adsorption thermodynamics on chitin is thus directly linked to its applications in environmental monitoring and technology

    Chitin as a Sorbent Superior to Other Biopolymers: Features and Applications in Environmental Research, Energy Conversion, and Understanding Evolution of Animals

    No full text
    Chitin is an effective sorbent which can be used in environmental monitoring, beyond obvious applications in withholding metal-containing pollutants from wastewater- or nuclear fuel reprocessing flows, since background levels in (purified) chitin are very low except for a few metals (Fe, Cu, Al, Ti, and Zn). Since retention of Mx+ and their complexes on chitin depend on an oxidation state, and to a lesser extent the presence of possible ligands or co-ligands, partition between chitin samples exposed to sediment and those exposed to water can be changed by environmental factors such as local biota producing or absorbing/metabolizing effective ligands such as citrate or oxalate and by changes of redox potential. Thermodynamics are studied via log P, using calibration functions log P vs. 1/r or log P vs. Σσ (sum of Hammett parameters of ligand donor groups) for di- and trivalent elements not involved in biochemical activity (not even indirectly) and thus measuring “deviations” from expected values. These “deviations” can be due to input as a pollutant, biochemical use of certain elements, precipitation or (bio-induced reduction of SO42− or CO2) dissolution of solids in sediment. Biochemical processes which occur deep in sediment can be detected due to this effect. Data from grafted chitin (saturation within ≤ 10 min) and from outer surfaces of arthropods caught at the same site do agree well. Log P is more telling than total amounts retrieved. Future applications of these features of chitin are outlined

    Das Biologische System der Elemente

    No full text

    Metals in biomass

    No full text
    corecore