2 research outputs found

    Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars

    Get PDF
    A dietary shift from resource-demanding animal protein to sustainable food sources, such as protein-rich beans, lowers the climate footprint of food production. In this study, we examined the nutrients and antinutrients in 15 fava bean varieties cultivated in Sweden to select varieties with high nutritional value. On a dry weight basis, the fava beans were analyzed for their content of protein (range 26–33%), amino acids (leucine range: 50.8–72.1 mg/g protein, lysine range: 44.8–74.8 mg/g protein), dietary fiber (soluble fraction range: 0.55–1.06%, insoluble fraction range: 10.7–16.0%), and iron (1.8–21.3 mg/100 g) and zinc contents (0.9–5.2 mg/100 g), as well as for the following antinutrients: lectin (0.8–3.2 HU/mg); trypsin inhibitor (1.2–23.1 TIU/mg) and saponin (18–109 \ub5g/g); phytate (112–1,281 mg/100 g); total phenolic content (1.4–5 mg GAE/g); and vicine(403 \ub5g/g − 7,014 \ub5g/g), convicine (35.5 \ub5g/g − 3,121 \ub5g/g) and the oligosaccharides raffinose (1.1–3.9 g/kg), stachyose (4.4–13.7 g/kg) and verbascose (8–15 g/kg). The results indicate substantial differences between cultivars in relation to their contents of nutrients and antinutrients. Only one of the cultivars studied (Sunrise) have adequate estimated bioavailability of iron, which is of major concern for a diet in which legumes and grains serve as important sources of iron. The nutritional gain from consuming fava beans is significantly affected by the cultivar chosen as the food source

    Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

    Get PDF
    Objective To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation
    corecore