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A B S T R A C T   

A dietary shift from resource-demanding animal protein to sustainable food sources, such as protein-rich beans, 
lowers the climate footprint of food production. In this study, we examined the nutrients and antinutrients in 15 
fava bean varieties cultivated in Sweden to select varieties with high nutritional value. On a dry weight basis, the 
fava beans were analyzed for their content of protein (range 26–33%), amino acids (leucine range: 50.8–72.1 
mg/g protein, lysine range: 44.8–74.8 mg/g protein), dietary fiber (soluble fraction range: 0.55–1.06%, insoluble 
fraction range: 10.7–16.0%), and iron (1.8–21.3 mg/100 g) and zinc contents (0.9–5.2 mg/100 g), as well as for 
the following antinutrients: lectin (0.8–3.2 HU/mg); trypsin inhibitor (1.2–23.1 TIU/mg) and saponin (18–109 
µg/g); phytate (112–1,281 mg/100 g); total phenolic content (1.4–5 mg GAE/g); and vicine(403 µg/g − 7,014 
µg/g), convicine (35.5 µg/g − 3,121 µg/g) and the oligosaccharides raffinose (1.1–3.9 g/kg), stachyose 
(4.4–13.7 g/kg) and verbascose (8–15 g/kg). The results indicate substantial differences between cultivars in 
relation to their contents of nutrients and antinutrients. Only one of the cultivars studied (Sunrise) have adequate 
estimated bioavailability of iron, which is of major concern for a diet in which legumes and grains serve as 
important sources of iron. The nutritional gain from consuming fava beans is significantly affected by the cultivar 
chosen as the food source.   

1. Introduction 

Grain legumes, such as beans and lentils, have favorable nutritional 
compositions for human consumption, being low in fat and high in 
protein, dietary fibers, iron, zinc and vitamins such as folate, riboflavin 
and thiamine (Tiwari & Singh, 2012). Furthermore, grain legumes 
contain antioxidants and other bioactive compounds that can contribute 
to human health (Ganesan & Xu, 2017). Several health benefits have 
been proposed in relation to the consumption of grain legumes, 
including reduced risk of colorectal cancer (Aune et al., 2011), 
improvement of gut health, reduced blood cholesterol levels (Clemente 
& Olias, 2017), and reduced risk of cardiovascular disease (Sharma, 
Srivastava, & Prakash, 2011). 

However, legumes also contain a number of bioactive compounds 
that are traditionally classified as antinutrients: phytates, saponins, 
lectins and protease inhibitors. Even if the levels of several of these 
compounds can be lowered or eliminated using different processing 
techniques, they need to be monitored, given that antinutritional com
pounds can exert negative effects on the human body and reduce the 

digestibility of nutrients (Gilani, Cockell, & Sepehr, 2005; Khattab & 
Arntfield, 2009). A plant-based diet that contains grain legumes is 
generally considered to have a low level of bioavailability of minerals 
(mainly calcium, iron and zinc) owing to the presence of absorption 
inhibitors, mainly phytates and polyphenols (Sandberg, 2002; Tako, 
Beebe, Reed, Hart, & Glahn, 2014). The inhibitory effect of phytates on 
mineral absorption is linked to the formation of insoluble and indi
gestible phytate-mineral complexes in the gut (Sandstrom, 1997). 
Excessive levels of phytates in the diet can lead to deficiencies of zinc 
and iron as the result of insufficient absorption (Zhou & Erdman, 1995). 
The main minerals of concern when evaluating the nutritional value of a 
plant based diet are iron and zinc. Vegetarians have been shown to have 
lower iron stores, and an increase in iron deficiency anemia, compared 
with non-vegetarians, mainly explained by the lower bioavailability of 
iron in plant foods (Haider, Schwingshackl, Hoffmann, & Ekmekcioglu, 
2018; Pawlak, Berger, & Hines, 2016). The current prevalence of iron 
deficiency in women of fertile ages living in Western countries has been 
estimated to 10–30% (Cooper, Greene-Finestone, Lowell, Levesque, & 
Robinson, 2012; Hercberg, Preziosi, & Galan, 2001; Lahti-Koski, Valsta, 
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Alfthan, Tapanainen, & Aro, 2003; Umbreit, 2005). This proportion is at 
risk of increasing as a result of the protein shift, especially for in
dividuals in vulnerable groups such as women of fertile ages, children 
and adolescents. Bioavailability of iron and zinc can be estimated by 
calculation of the molar ratios of phytate to mineral (Lestienne, Icard- 
Vernière, Mouquet, Picq, & Trèche, 2005; Lopez, Leenhardt, Coudray, & 
Remesy, 2002). 

The levels of nutrients and antinutritional components can differ 
significantly between cultivars of the same legume crop. Therefore, it is 
of importance to screen these compounds to identify cultivars that are 
most suited to different applications. Nutritional data, as well as data on 
agricultural properties such as yield and adaptability to different cli
mates and soil types are important for selecting cultivars that are 
optimal as human or animal feedstuffs (Shang et al., 2016). 

The fava bean is a grain legume that, in contrast to the soy bean, can 
be cultivated in a wide variety of geographic locations, even in regions 
with a short growing season, such as the Boreal zone (Stoddard & 
Hämäläinen, 2011). The fava bean has a long history of being used as a 
food for human consumption, with the oldest seeds of fava bean being 
traced to the late 10th millennium B.P. in north-west Syria (Tanno & 
Willcox, 2006). In countries with more advanced economies, legumes 
are generally underutilized as a food for humans, as the major sources of 
protein in the diet in these regions are animal products (Tijhuis, Ezen
dam, Westenbrink, & Rossum, 2012). Among legumes, the fava bean is 
noteworthy in that it is a crop that can be cultivated to a greater extent in 
the Nordic region and it plays a role in shifting protein consumption 
from resource-demanding animal proteins to domestically grown crops, 
which can also be used as feedstock (Röös et al., 2018). Utilizing locally 
grown crops is especially important in regions that are currently 
dependent upon the importation of soy beans for foodstuffs and 
feedstock. 

Apart from the common antinutritional components, fava beans 
contain vicine and convicine, which in individuals with the x-chromo
some-inherited glucose-6-phosphate dehydrogenase (G-6-PD) defi
ciency can cause acute hemolysis, a disease known as favism (Arese & 
Flora, 1990). The levels of antinutrients vary according to the specific 
fava bean cultivar, stage of maturation, climate of cultivation, soil 
properties etc. (Kumar & Nidhi, 2015). Extensive nutritional data on 
cultivars of fava beans that are suitable for cultivation in the Nordic 
climate are, to our knowledge, currently lacking. 

The aim of the present investigation was to elucidate the composi
tions of the nutrients and antinutrients in a number of fava bean vari
eties cultivated in Sweden, with the goal of suggesting an approach to 
select varieties that are suitable for creating food products for human 
consumption. 

2. Materials and methods 

2.1. Fava bean cultivars 

In total, 15 different cultivars of fava bean (Vicia faba L., var. minor) 
were harvested during the mature stage. Of these, 14 originated from the 
same field in Grästorp, Sweden, which was planned and cultivated by 
Hushållningssällskapet. These cultivars included the white-flowered cul
tivars of Banquise, Fernando, Gloria, Sunrise, and Taifun, and the color- 
flowered cultivars of Fuego, Boxer, Fanfare, Tiffany, Lynx, Birgit, Daisy, 
GL Emilia, and Stella. In addition, the color-flowered cultivar Alexia was 
harvested from a different field in the same region (Västra Götaland, 
Sweden). For all the analyses, dry beans were ground into a fine flour 
using a rotor mill with a sieve mesh size of 0.5 mm (Retsch GmbH, Haan, 
Germany). 

2.2. Analyses of nutrients 

2.2.1. Protein Determination 
Total nitrogen was determined by complete combustion based on the 

Dumas principle, using the LECO Trumac nitrogen analyzer (LECO 
Corporation, St. Joseph, MI, USA) with EDTA as the standard. Com
bustion of the samples (100 mg) was conducted in a sealed furnace at 
1150 ◦C. The total protein content was calculated using a nitrogen to 
protein conversion factor of 5.4, which correspond to an average for 
legume proteins (Mariotti, Tomé, & Mirand, 2008). 

2.2.2. Amino acid profiles 
Amino acid analysis was carried out using a modified version of the 

method previously described by (Özcan & Şenyuva, 2006). To 100 mg of 
fava bean flour, 8 mL of 6 mol/L HCl were added and the mixture was 
hydrolyzed for 24 h at 110 ◦C After hydrolysis, the volume was adjusted 
to 10 mL using Milli-Q water, and an aliquot of 2 μL was injected into the 
LC-MS system [Agilent 1260 HPLC with a Phenomenex column (C18 (2) 
250 μm × 4.6 μm × 3 μm), coupled to the Agilent 6120 Quadrupole in 
the SIM-positive mode] (Agilent Inc., Santa Clara, CA, USA). The 
composition of mobile phase A was 3% MeOH, 0.2% formic acid, and 
0.01% acetic acid (HAc), and that of mobile phase B was 50% MeOH 
with 0.2% formic acid and 0.1% HAc. The initial gradient, held for the 
first 8 min, contained 94% A and 6% B. This gradually changed until it 
reached 80% A and 20% B after 20 min. This gradient was held for a run 
time of 27 min, then gradually altered until it reached 94% A and 6% B 
at a run time of 28 min, and then held again for a total run time of 40 
min. Twenty-four amino acids diluted in 0.2 mol/L HAc in the concen
tration range of 1–20 mg/L were used to derive the standard curve. Due 
to the use of acidic hydrolysis, tryptophan, cysteine, methionine and 
tyrosine could not be quantified. 

2.2.3. Mineral analyses 
A microwave digestion step (Milestone microwave laboratory sys

tem; EthosPlus, Sorisole, Italy) was performed as previously described 
by Fredriksson, Carlsson, Almgren, and Sandberg (2002). Briefly, 0.15 g 
of sample was mixed with 0.75 mL of concentrated trace metal grade 
HNO3, 0.15 mL HCl, and 3 mL H2O in a Teflon vial. The sample was 
digested to create a transparent solution using a temperature program 
that reached 180 ◦C in 15 min and maintained this temperature for an 
additional 20 min. After cooling, the sample was decanted into a test 
tube and diluted to a final volume of 10 mL. Acid digestion was per
formed in duplicate before determining the iron and zinc contents by 
atomic absorption spectrometry (200 Series AA System; Agilent). Cali
bration was performed using commercial standards with a concentration 
range of 0.125–5.0 mg/L. Measurements were carried out using stan
dard flame operating conditions, as recommended by the manufacturer. 

2.2.4. Analysis of dietary fiber 
Fava bean flours were analyzed by gas chromatography for total 

dietary fiber according to the Uppsala method (Theander, Aman, 
Westerlund, Andersson, & Pettersson, 1995) and for soluble and insol
uble dietary fiber according to the method of Andersson, Merker, Nils
son, Sørensen, and Åman (1999). Nonresistant starch was removed by 
α-amylase and amyloglucosidase, and remaining polysaccharides were 
precipitated by 80% ethanol. Polysaccharides were hydrolyzed by acid 
and quantified as alditolacetates by gas chromatography. The analyses 
were performed at the Swedish University of Agricultural Sciences in 
Uppsala. 

2.2.5. Ash and moisture determination 
The moisture content of the ground fava beans was determined in 

duplicate samples of 0.5 g of material that were dried at 105 ◦C for 20 h, 
placed in a desiccator for 2 h, weighed, and (0.2 g) then combusted in a 
furnace at 550 ◦C for 3 h, cooled to about 300 ◦C and transferred to a 
desiccator for 3 h before weighing again. 

I.-C. Mayer Labba et al.                                                                                                                                                                                                                       



Food Research International 140 (2021) 110038

3

2.3. Analyses of antinutrients 

2.3.1. Phytate analysis 
Phytate was analyzed as inositol hexaphosphate (InsP6) by high- 

performance ion chromatography (HPIC) according to Carlsson, Berg
man, Skoglund, Hasselblad, and Sandberg (2000). Fava bean flour (0.5 
g) was extracted with 10 mL of 0.5 mol/L HCl for 3 h using a laboratory 
shaker (Heidolph Reax 2; Heidolph Instruments GmbH, Schwabach, 
Germany). Then, 1 mL was removed, centrifuged, and the supernatant 
was transferred to an HPLC vial. The chromatography setup consisted of 
an HPLC pump (model PU-4080i; Jasco Inc., Easton, MD, USA) for the 
eluent and an RHPLC pump (model PU-4180; Jasco) equipped with a 
PA-100 guard column and a CarboPac PA-100 column. 

InsP6 was eluted with an isocratic eluent of 80% HCl (1 mol/L) and 
20% H2O at 0.8 mL/min, subjected to a post-column reaction with 
ferrous nitrate, and detected with at 290 nm in a UV–visible HPLC de
tector (UV-4075; Jasco). Each sample had a run time of 7 min, and the 
InsP6 concentration was calculated using external standards covering 
the concentration range of 0.1–0.6 μmol/mL. 

2.3.2. Estimations of relative iron and zinc bioavailabilities 
The molar ratios Phy:Fe and Phy:Zn were calculated to estimate the 

relative bioavailabilities of iron and zinc, respectively, in the fava bean 
cultivars, and to give an indication of the inhibitory effects of phytates 
on these minerals. A molecular mass for phytate of 660.3 g/mol was 
used for the calculations. 

2.3.3. Vicine and convicine assays 
Analyses of flour samples from fava bean cultivars were performed 

by the Natural Resources Institute of Finland, according to the method of 
Gutierrez et al. (2006). Briefly, samples (1 g) were extracted with ul
trapure water (30 mL) in a hot-water bath (90 ◦C) for 3.5 h, with shaking 
every 30 min. The samples were then cooled in a water bath and 
centrifuged to remove solids. Concentrated HCl (100 µL) was added to 
the supernatant (10 mL), followed by an additional centrifugation step 
(10 min, 2500g) Samples were filtered through a 0.45-µm Acrodisc GHP 
membrane filter (Pall Corporation, Port Washington, NY, USA) before 
analysis by HPLC (Agilent 1100 with a diode array detector, HPLC-DAD; 
Agilent) on an Atlantis T-3 (2.1 × 150 mm, 3 µm) column (Waters Corp., 
Milford, MA, USA), followed by elution with a gradient of 50 mmol/L 
phosphate buffer and methanol at 0.2 mL/min. Detection of vicine 
(Sigma-Aldrich, St. Louis, MO, USA) and convicine was conducted at 
280 nm, and for identification purposes the spectrum from 190 nm to 
450 nm was recorded. Quantification of convicine was achieved using 
the calibration curve for vicine. 

2.3.4. Lectin quantification 
One gram of bean flour from each cultivar was mixed with 10 mL of 

PBS in a 50-mL centrifuge tube according to the procedure previously 
described by Liener and Hill (1953), with some modifications. The 
mixture was shaken overnight on a microplate shaker (VWR Interna
tional, Monroeville, PA, USA) at speed setting 350 at 4 ◦C, and thereafter 
centrifuged at 14,000g for 10 min at 4 ◦C. The filtrated supernatant was 
then serially diluted in a 96-well microplate, from no dilution in Well 1 
to a 1:128 dilution in Well 8. In the first well, 0.1 mL of extract was 
placed, and in the other wells was placed 0.05 mL of PBS. The extract 
was then serially diluted by a factor of 1:2 with volume of 0.05 mL, for 
each step. From the last well, 0.05 mL of the volume was discarded and 
finally 0.05 mL of 2% human red blood cells was added to each well. The 
microplates were then mixed gently on a microplate shaker (VWR In
ternational) at room temperature for 2 h. 

Hemagglutination was determined visually using a phase microscope 
(VWR International) and photographed (Moticam, Hong Kong, China), 
as described previously by Makkar, Becker, Abel, and Pawelzik (1997). 
From each well, 5 μL were transferred to a glass slide and placed under a 
cover glass. Dilutions containing blood cells that were forming 

aggregates with five or more cells were regarded as positive in terms of 
hemagglutination activity. A blank consisting of 0.05 mL of PBS and 
0.05 mL of 2% red blood cells was used. 

The hemagglutination activity was calculated according to the 
equation previously described by (Liener & Hill, 1953). The highest 
dilution that gave a positive result for hemagglutination was considered 
to contain one hemagglutinin unit (HU− mg flour, calculated on a dry- 
weight basis): 

HU− mg =
Da × Db × S

V
×

100%
100% − MC  

where HU is the hemagglutinin unit per mg of flour, on a dry-weight 
basis, 

Da is the dilution factor of the extract in Well 1 (equal to 1 unless the 
original extract was diluted), Db is the dilution factor in the tube con
taining 1 HU, S is mL of the original extract/mg flour, V is the volume of 
extract in Well 1, and MC is the moisture content (%) of the flour. 

2.3.5. Determination of saponin 
Fava bean flour (1 g) was mixed with 10 mL of 0.9% PBS solution and 

agitated overnight on a microplate shaker (VWR) at speed setting 350 at 
4 ◦C. The mixture was then centrifuged at 10,000g for 15 min at 4 ◦C. 
The supernatant was stored at − 20 ◦C until use. 

Saponin was quantified using a competitive ELISA with a monoclonal 
antibody that recognizes unconjugated soyasaponin I (Frøkiær, 
Sørensen, Sørensen, & Sørensen, 1995). In brief, diluted samples were 
incubated with the monoclonal antibody directed against soyasaponin 
I for 1 h, and then transferred to a microtiter plate (Maxisorb; Nunc, 
Roskilde, Denmark) that was coated with saponin-BSA conjugate (0.1 
µg/mL). A dilution row of pure soyasaponin I was included as the 
standard. After incubation and washing with PBS-Tween buffer, horse
radish peroxidase-conjugated rabbit anti-mouse immunoglobulin anti
body was added to the wells of the plate. The plates were incubated for 1 
h, washed, and developed by the addition of 3,3′,5,5′-tetrame
thylbenzidine in hydrogen peroxide. The reaction was stopped by the 
addition of 2 mol/L phosphoric acid and the absorption at 450 nm was 
measured. 

2.3.6. Trypsin inhibitors 
Determination of trypsin inhibition was performed according to the 

method of Kakade (1974). Ground fava beans were extracted as 
described for saponin analysis. From a stock solution of 1 mg/mL trypsin 
in 1 mmol/L HCl, a working solution of 200 μg/mL in 0.05 mol/L Tris- 
HCl (pH 7.5) was made fresh for each analysis. From the trypsin working 
solution, 20 μL were mixed with 80 μL of extracted sample in a 96-well 
microplate. The mixture was then serially diluted in 0.05 mol/L Tris HCl 
buffer (pH 7.5) in 1:1 steps and incubated at 24 ◦C for 60 min. A working 
solution of 0.01 mol/L Nα-benzoyl-L-arginine 4-nitroanilide hydrochlo
ride (L-BAPA) in Tris-HCl (pH 7.5) was made from a stock solution of 50 
mg/mL L-BAPA in DMSO. From the freshly prepared L-BAPA working 
solution at room temperate, 180 μL were added to each well in the 
microplate and mixed with the diluted sample extracts. The microplate 
was then immediately transferred to a kinetic plate reader, set at 410 
nm, using a run time of 10 min with10-second interval readings at 37 ◦C. 

2.3.7. Total phenolic content 
The total phenolic content (TPC) was determined by the Folin- 

Ciocalteu method based on the technique of Howard, Clark, and 
Brownmiller (2003), with some modifications. 

Duplicate samples of fava bean flour (0.8 g) were mixed thoroughly 
with 5 mL of methanol extraction solution (1% trifluoracetic acid in 
MeOH:H2O, 70:30) and then sonicated for 5 min (Branson Ultrasonics 
Corporation, Danbury, CT, USA). The mixture was vortexed and soni
cated again for 5 min, incubated in a shaking water bath (60 ◦C, 100 
rpm) for 30 min and then cooled on ice for 10 min. The extracts were 
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vortexed and centrifuged at 5000g for 5 min at 4 ◦C. The supernatant 
was collected and the pellet was re-dissolved in 5 mL of methanol 
extraction solution, sonicated as described above, and centrifuged 
(5000g for 5 min at 4 ◦C). The second supernatant was added to the 
previously collected supernatant and stored at − 20 ◦C until analysis. 
Before use, the extracts were centrifuged at 5000g for 5 min. 

For the TPC analysis, Folin-Ciocalteu reagent was added and the 
extracts were analyzed spectrophotometrically against a standard curve 
of gallic acid, measuring the absorbance at 765 nm using the Safire 2 
plate reader (Tecan Group Ltd., Männedorf, Switzerland) with the 
Magellan software. The results for TPC are presented as gallic acid 
equivalent (GAE) per gram of dry weight (DW). 

2.3.8. Determination of oligosaccharides 
Quantification of the oligosaccharides raffinose, verbascose and 

stachyose was performed by HPIC. For this, 100 mg of duplicate samples 
were mixed with 10 mL of Milli-Q water and set to shake for 1.5 h at 
ambient temperature using a laboratory shaker (Heidolph Reax 2; Hei
dolph Instruments GmbH, Schwabach, Germany). The solution was 
frozen, thawed and vortexed before transfer of 1 mL to an Eppendorf 
tube (Eppendorf GmbH, Hamburg, Germany), centrifuged at 12,000g for 
2.5 min, diluted 10-fold and transferred to HPLC vials before injection. 
The chromatography setup consisted of an HPLC pump (L-6200A 
intelligent pump; Merck Hitachi, NJ, USA), a microsampler (CMA/200 
autosampler), and a CarboPac PA-100 analytical column (Thermo Fisher 
Scientific, Waltham, MA, USA). The oligosaccharides were eluted with a 
gradient that consisted of A (Milli-Q H2O), B (NaAc, 1 m/L) and C 
(NaOH, 1 m/L), and detected in an electrochemical detector (Dionex 
ED40; Thermo Fisher Scientific). Each sample had a run time of 40 min, 
the injection volume was 20 µL and the concentration was calculated 
using an external standard in the concentration range of 5–15 ppm. For 
the external standard, verbascose (Megazyme, Bray, Co. Wicklow, 
Ireland), stachyose tetrahydrate (MP Biomedicals, Irvine, CA, USA), and 
alfa-D-raffinose-pentahydrate (Thermo Fischer Scientific) were used. 
Data were collected and evaluated using the Borwin Chromatography 
Software (JMBS Developments, Le Fontanil, France). 

2.3.9. Statistical analysis 
The results are presented as means and standard deviation, calcu

lated using Microsoft Excel 2002. The contents of iron, phytate, protein 
and zinc were compared between cultivars using two tailed t-test. The 
cultivar Gloria was used as a reference as this cultivar is currently 
cultivated as a food crop. Contents were considered higher compared to 
the reference cultivar if p < 0.05. The total phenolic content was 
compared between colored and white flowered cultivars using a two 
tailed t-test, a difference was found significant if p < 0.05. 

3. Results and discussion 

3.1. Protein content 

The protein contents of the analyzed fava bean cultivars varied from 
26.2% in cultivar Alexia to 32.8% in the high-protein cultivar Gloria 
(Table 1). In a study of German fava bean cultivars (Makkar et al., 1997), 
the crude protein content was reported to be in the range of 25.7–30.4%. 
Cultivar Gloria has previously been reported to contain 30.0–33.7% 
protein (Jezierny, Mosenthin, Sauer, & Eklund, 2009; Makkar et al., 
1997), which is comparable with the results of the present study. A 
protein content range of 22–38% for cultivars of fava bean was reported 
by Griffiths and Lawes (1978)). These findings illustrate the large vari
ability that exists between fava bean cultivars. 

3.2. Amino acid compositions 

The amino acid compositions of the fifteen fava bean cultivars are 
presented in Table 2. In this study, the extraction method used for amino 

acids was acidic hydrolysis, which breaks down tryptophan, cysteine, 
methionine and tyrosine. However, proteins from grain legumes are 
considered to be low in the sulfur-containing amino acids (methionine 
and cysteine), as well as tryptophan, and generally contain high levels of 
leucine, lysine, aspartic acid, arginine and glutamic acid (Boye, Zare, & 
Pletch, 2010). In contrast, most cereal grains contain a low level of 
lysine but very high levels of sulfur-containing amino acids, which is the 
reason why these two food categories are considered as complementary 
in a plant-based diet. In the present study, the leucine content varied 
from 50.8 mg/g protein in cultivar Fanfare to 72.1 mg/g protein in 
cultivar Boxer. For lysine, the concentrations varied from 44.8 mg/g 
protein in Fanfare to 74.8 mg/g protein in cultivar Birgit. 

3.3. Dietary fiber 

The contents of dietary fiber in the fifteen cultivars of fava bean are 
presented in Table 3. 

The endogenous enzymes of the human digestive tract are unable to 
metabolize dietary fiber, which instead serves as the main energy source 
for bacteria in the colon (Hamaker & Tuncil, 2014). Soluble dietary fiber 
reduces the postprandial blood sugar and insulin responses (Sierra et al., 
2002) and may have beneficial effects in protecting against several 
forms of cancer, reducing blood pressure, and exerting an anti- 
inflammatory effect in the digestive tract (Chawla & Patil, 2010; 
Scheppach et al., 2004). Insoluble dietary fiber reduces the gastroin
testinal transit time and increase the fecal bulk (Weickert et al., 2006). In 
this study, the soluble fraction of dietary fiber ranged from 0.55% of the 
total DW in cultivar Tiffany to 1.06% in cultivar Fanfare, and the 
insoluble fiber fraction ranged from 10.70% in cultivar Daisy to 15.96% 
in Stella. As expected, insoluble DF was the most abundant form, with 
glucomannan and uronic acids appearing as the largest fractions in all 

Table 1 
Protein, phytate, ash and mineral content of the 15 fava bean cultivars.  

Flower 
type 

Cultivar Protein Phytate Fe Zn Ash 

Colored Alexia 22.7±0.10 

* 
1281±15 

* 
3.8±0.02 * 3.8±0.06 * 3.41 

Colored Birgit 24.0±0.07 

* 
773±13 3.2±0.07 * 1.3±0.05 3.23 

Colored Boxer 25.8±0.03 

* 
880±18 5.5±0.00 * 1.6±0.01 2.96 

Colored Daisy 24.8±0.04 

* 
720±13 * 4.7±0.04 * 1.2±0.03 * 2.83 

Colored Emilia 25.5±0.04 

* 
742±5 * 4.8±0.04 * 1.5±0.05 2.72 

Colored FanFare 24.9±0.06 

* 
612±10 * 4.0±0.13 1.22±0.05 3.10 

Colored Fuego 24.5±0.03 

* 
724±1.9 * 4.3±0.15 1.4±0.01 3.17 

Colored Lynx 23.4±0.01 

* 
313 ±6 * 7.0±0.18 * 1.4±0.02 3.15 

Colored Stella 22.8±0.24 

* 
735 ±29 3.9±0.05 * 1.2±0.01 * 3.19 

Colored Tiffany 23.3±0.24 

* 
748±18 3.9±0.02 * 0.9±0.00 * 3.19 

White Banquise 24.3±0.04 

* 
946 ±1 * 1.8±0.02 * 3.6±0.10 * 3.13 

White Fernando 27.1±0.03 

* 
810±26 4.4±0.27 1.3±0.01 3.02 

White Gloria 28.3±0.03 

* 
820 ±6 5.1±0.02 1.5±0.02 3.24 

White Sunrise 24.6±0.03 

* 
112±4.2 * 21.3±0.29 

* 
5.2±0.06 * 3.36 

White Taifun 25.0±0.03 

* 
823±21 3.9±0.22 1.3±0.02 * 3.27 

Data presented as means of duplicates ± standard deviation. 
Phytate and mineral content are presented as mg/100 g DW. 
Ash and protein are presented as percentage on a DW basis. 
*Indicate a significant difference compared to the reference cultivar Gloria. 
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Table 2 
Amino acid compositions of the 15 cultivars of fava bean, expressed as mg of amino acid per g of protein. Calculations on daily requirements and recommendations are based on data from WHO/FAO/UNU (FAO/WHO/ 
UNU, 2007).   

Amino acid content (mg/g protein)                 

mg/ 
kg 
BW 

mg/g 

Amino acids Alexia Banquise Birgit Boxer Daisy Emilia FanFare Fernando Fuego Gloria Lynx Stella Sunrise Taifun Tiffany per 
dayA 

proteinB 

Essential                  
Histidine 28.2±0.5 30.8±0.5 35.9±1.2 33.6±0.2 31.6±1.8 27.5±2.8 27.3±0.5 30.8±1.5 29.1±0.1 31.0±0.9 13.3±1.0 29.3±1.5 28.5±0.0 30.3±0.3 31.3±0.0 10 15 
Isoleucine 23.4±1.0 25.9±0.6 20.7±0.4 33.1±2.3 26.7±1.8 24.4±3.5 20.9±0.7 24.6±1.1 21.4±0.0 25.8±0.3 23.7±0.5 27.1±1.5 22.3±0.7 24.0±0.9 23.9±1.0 20 30 
Leucine 55.0±0.4 59.8±0.8 52.8±0.4 72.1±1.3 61.6±4.7 56.9±5.4 50.8±1.4 58.9±2.7 51.5±0.1 58.0±4.9 55.7±1.6 63.3±2.8 54.8±1.0 57.4±0.9 58.4±0.8 39 59 
Lysine 49.7±0.4 51.6±0.3 74.8±0.3 65.4±5.2 51.4±3.3 47.2±4.7 44.8±0.7 48.9±2.5 46.3±0.1 52.4±1.1 48.9±1.3 54.4±3.0 47.7±0.7 51.7±0.9 51.6±0.7 30 45 
Phenylalanine 30.5±0.9 31.3±0.8 32.1±0.4 36.6±1.2 32.4±2.7 29.9±3.3 27.4±0.4 31.1±1.6 27.5±0.0 33.3±0.2 23.0±0.1 33.6±1.6 29.0±0.5 30.6±0.1 31.7±0.4 25C 38C 

Threonine 28.6±0.1 32.1±0.1 38.0±0.3 37.7±1.0 33.8±3.3 29.3±2.8 26.6±0.2 31.0±1.4 27.4±0.5 32.1±0.4 29.6±1.2 32.9±1.3 29.0±0.3 30.8±0.4 31.2±0.2 15 23 
Valine 36.0±0.7 38.7±0.5 33.2±0.5 42.3±0.5 39.8±2.4 37.2±2.5 32.9±0.7 37.4±2.2 35.7±0.6 38.4±0.8 36.6±1.3 39.5±1.5 34.6±0.0 37.5±1.0 37.2±0.7 26 10 
Non essential 
Alanine 49.1±0.1 57.9±0.1 52.8±0.1 53.8±1.2 57.3±3.6 45.6±3.1 48.4±0.3 54.4±4.5 47.6±0.2 55.7±0.2 53.7±1.9 48.9±2.6 52.4±0.4 54.9±0.6 56.5±1.5 – – 
Arginine 75.1±0.6 98.7±0.8 121.0±2.5 107.3±2.4 94.4±6.1 85.1±6.0 85.3±0.2 99.5±5.9 88.5±0.3 114.7±1.2 52.1±2.4 86.4±6.0 90.0±1.7 95.6±1.9 103.9±1.7 – – 
Asparginine 89.3±0.9 101.7±0.6 117.8±2.1 111.4±4.6 99.4±9.0 111.5±6.2 84.1±3.1 99.5±7.7 86.5±0.9 120.5±6.8 91.5±0.2 97.0±15.5 94.5±2.6 100.8±12.5 104.9±4.9 – – 
Aspartic acid 95.0±0.0 107.1±1.1 106.7±0.2 107.1±0.1 102.5±7.1 89.1±7.1 88.0±0.4 101.0±7.1 86.4±1.0 109.5±0.5 96.8±1.3 96.7±6.1 94.8±0.8 101.4±0.3 102.0±1.3 – – 
Cysteine 10.0±0.0 10.2±0.4 11.3±0.1 9.9±0.6 10.7±0.6 8.5±1.0 9.4±0.4 10.2±0.4 10.3±0.0 10.0±0.4 9.9±0.5 10.0±0.4 9.8±0.3 10.5±0.2 10.4±0.1 – – 
Glutamic acid 133.2±2.8 151.5±2.6 187.9±0.1 154.5±0.7 150.2±8.7 130.1±9.4 125.6±0.9 148.1±8.7 125.0±1.6 154.2±2.4 136.6±1.3 141.0±8.2 137.2±2.4 145.3±0.6 149.8±0.2 – – 
Glycine 32.7±0.2 37.8±0.6 39.5±0.8 30.2±1.9 36.0±2.0 27.2±1.5 31.9±0.0 34.6±2.4 32.1±0.0 35.8±0.2 35.0±1.1 28.8±2.2 35.8±1.2 35.8±1.0 37.5±1.0 – – 
Proline 32.9±0.2 37.8±0.1 45.6±0.2 48.2±2.3 38.1±2.1 35.0±3.4 32.9±0.2 36.9±2.7 33.5±0.3 37.8±0.1 36.0±1.2 41.1±2.9 35.7±0.1 36.8±0.4 37.6±0.1 – – 
Serine 41.3±1.1 45.6±0.2 52.1±0.0 48.9±3.0 46.0±2.4 40.2±3.5 39.5±0.3 44.7±2.6 40.7±0.3 45.5±1.4 43.1±1.2 44.2±2.9 42.6±0.5 44.4±1.1 46.1±0.4 – – 
Taurine 30.3±0.7 32.0±2.1 41.5±0.6 34.1±1.2 30.1±2.1 18.6±0.2 26.4±0.7 28.5±2.7 24.9±1.0 33.8±1.9 30.6±2.8 22.5±0.2 30.8±2.2 26.8±0.6 32.2±0.9 – – 

Results are expressed on a dry weight basis. Values are means (n = 2) ± standard deviation. 
A Amino acid recommendations calculated as mg/kg body weight per day for adults, based on a total protein requirement of 0.66 g/kg BW per day according to WHO/FAO/UNU 200734. 
B Amino acid recommentations expressed as mg/g protein consumed for adults according to WHO/FAO/UNU 200734. 
C Phenylalanine and Tyrosine combined. 
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the cultivars (contents in the ranges of 4.93–8.45% and 1.82–2.94%, 
respectively). In the soluble fraction, arabinose, rhamnose and soluble 
uronic acids showed the highest contents (ranges of 0.06–0.14%, 
0.15–0.22% and 0.24–0.41% respectively). In Singh, Bhardwaj, and 
Singh (2014) a total dietary fiber content of fava bean was reported in 
the range of 12.25–13.49%, which is in line the range found in the 
present study. 

A detailed description of the dietary fiber contents of the analyzed 
fava beans can be found in Supplementary Table 1. 

3.4. Mineral content 

The zinc and iron contents of the analyzed fava bean cultivars are 
presented in Table 1. The iron content ranged from 1.8 mg/100 g DW in 
cultivar Banquise to 21.3 mg/100 g DW in cultivar Sunrise. The zinc 
content ranged from 0.9 mg/100 g DW in cultivar Tiffany to 5.2 mg/100 
g in cultivar Sunrise. This indicates a variation of almost 12-fold for the 
iron content and almost 6-fold for the zinc content among the analyzed 
fava bean cultivars. The results in this study are comparable to previ
ously published data on zinc and iron concentrations in fava beans, with 
the exception of the iron content of cultivar Sunrise in the present study, 
which can be considered higher than previously described. In a study of 
forty different fava bean cultivars grown in Saudi Arabia, the iron con
tent was in the range of 14.6–15.8 mg/100 g and the zinc content was in 
the range of 5.8–7.2 mg/100 g (Khan et al., 2015). These results are 
comparable with the values deduced in the present study. In Cabrera, 
Lloris, Giménez, Olalla, and López (2003) lower ranges of iron and zinc 
contents for fava beans were reported (7.8–8.2 mg/100 g and 4.3–5.0 
mg/100 g, respectively). 

3.5. Phytate content and estimated relative bioavailabilities of zinc and 
iron 

The phytate contents of the analyzed fava bean cultivars are pre
sented in Table 1. The levels ranged from 112 mg/100 g in cultivar 
Sunrise to 1281 mg/100 g in cultivar Alexia, indicating a 10-fold vari
ation among the analyzed cultivars. Of the fifteen cultivars studied, two 
had a phytate content > 400 mg/100 g, which is considerably lower 
than the previously reported levels of phytate in fava beans that were 
analyzed using comparable methods. For Chinese fava bean, (Luo, Xie, & 
Luo, 2012) reported a phytate content of 823 mg/100 g. A similar 
phytate content, 746 mg/100 g, was reported by Honke, Sandberg, and 
Kozłowska (1999) for Polish fava beans. A content similar to those of the 
cultivars with the highest phytate content analyzed in this study was 
reported for Bolivian fava beans (1170 mg/100 g) by Lazarte, Carlsson, 
Almgren, Sandberg, and Granfeldt (2015). It has previously been sug
gested that apart from the cultivar, also climatic conditions, location, 

irrigation conditions, soil factors and crop year contribute to the vari
ability in phytate contents (Kumar et al., 2005; Oomah et al., 2011; 
Urbano et al., 2000). 

A common indicator of the bioavailabilities of zinc and iron in a food 
product is the molar ratio of phytates to these minerals. The inhibition of 
zinc absorption by phytate is dose-dependent (Fredlund, Isaksson, 
Rossander-Hulthén, Almgren, & Sandberg, 2006). The Phy:Fe molar 
ratios of the analyzed fava bean cultivars are presented in Fig. 1, the Phy: 
Zn molar ratios in Fig. 2. One of the analyzed cultivars (Sunrise) had a 
Phy:Zn molar ratio within the range of what is considered by the Eu
ropean Food Safety Authority (EFSA) to represent high bioavailability 
(≤5) (EFSA, 2017). The other fourteen cultivars analyzed had molar 
ratios of Phy:Zn > 15, which is considered to reflect low bioavailability 
(EFSA, 2017). 

Similar to the Zn absorption, the inhibition of iron absorption by 
phytates is dose-dependent, with a noticeable inhibitory effect even at 
low levels (Brune, Rossander-Hultén, Hallberg, Gleerup, & Sandberg, 
1992; Hallberg, Brune, & Rossander, 1989; Hurrell et al., 1992). Culti
vars Sunrise and Lynx showed the lowest molar ratios of Phy:Fe (0.4 and 
3.8, respectively). Only cultivar Sunrise had a Phy:Fe molar ratio that 
corresponds to a high bioavailability of iron and zinc. Each of the other 
cultivars were above the threshold that estimates a good availability. 
Therefore, the fava bean cultivars estimated in this paper except for 
cultivar Sunrise has a low estimated bioavailability of iron and zinc. 

3.6. Vicine and convicine concentrations 

The vicine and convicine contents of the fava bean cultivars are 
presented in Table 4. Cultivar Emilia showed the lowest contents of 
vicine and convicine (403.2 µg/g and 35.5 µg/g, respectively). The 
convicine content of cultivar Emilia was below the limit of detection 
(100 µg/g). In the other fourteen cultivars of fava bean, the vicine 
contents ranged from 1,185 µg/g in cultivar Tiffany to 7,014 µg/g in 
cultivar Gloria and the convicine contents ranged from 378 µg/g in 
cultivar Tiffany to 3121 µg/g in cultivar Banquise. Khazaei et al. (2019) 
reported that the low-vicine cultivar Mélodie contained 290 µg/g vicine 
and 14 µg/g convicine. Other cultivars have been reported to contain 
4640–5640 µg/g convicine and 940–3,090 µg/g vicine, demonstrating 
substantial variability among the fava bean cultivars. 

3.7. Lectin quantification 

In the analyzed fava bean cultivars, the contents of lectin ranged 
from 0.8 HU/mg in cultivar Daisy to 3.2 HU/mg in cultivar Taifun. Shi, 
Arntfield, and Nickerson (2018) reported that Canadian fava beans and 
Spanish fava beans contained lectin at 5.52 HU/mg and Alonso, Aguirre, 
and Marzo (2000) reported a lectin content of 49.3 HU/mg, with both 
studies measuring the hemagglutination of rabbit erythrocytes. The 
hemagglutinin assay that is commonly used to estimate the lectin con
tent of fava beans is a semi-quantitative method based on the ability of 
phytohemagglutinin (PHA) to agglutinate erythrocytes (Etzler, 1985). 
The hemagglutinin assay does not have high precision, as it is affected 
by the properties of the erythrocyte surface, blood type, species, meta
bolic state of the cells, and conditions of the assay, as well as by variable 
molecular properties of the lectins (Lis & Sharon, 1986). Due to the 
nature of the hemagglutinin assay, significant variations of the contents 
of lectin in fava beans have been reported. Furthermore, the lectin 
contents of plants are influenced by environmental factors and growth 
conditions (Jiang, Ma, & Ramachandran, 2010). 

3.8. Saponin content 

The saponin contents of the analyzed fava bean cultivars ranged from 
18.3 µg/g for cultivar Banquise to 109 µg/g DW for cultivar Sunrise 
(Table 4). This indicates substantial variability among the cultivars. It is 
difficult to compare the levels of saponin between studies reported in the 

Table 3 
Dietary fiber contents of the different fava bean cultivars, presented as per
centages on a dry-weight (DW) basis.   

Soluble Insoluble Total 

Alexia 0.60 15.29 15.89 
Birgit 0.56 13.62 14.19 
Boxer 0.66 12.13 12.79 
Daisy 0.67 10.70 11.37 
Emilia 0.69 13.71 14.40 
FanFare 1.06 13.05 14.11 
Fuego 0.79 14.84 15.64 
Lynx 0.66 14.84 15.50 
Stella 0.62 15.96 16.59 
Tiffany 0.55 13.23 13.78 
Banquise 0.55 11.64 12.19 
Fernando 0.80 14.26 15.06 
Gloria 0.71 12.95 13.66 
Sunrise 0.76 14.29 15.05 
Taifun 0.65 12.18 12.82  
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literature owing to the large discrepancies in the data, which are 
attributed to the various analytic methods used, including different 
extraction procedures and reference compounds. 

Saponins have been suggested to have plasma cholesterol-lowering 
effects in humans (Singh, Singh, Singh, & Kaur, 2017), and epidemio
logic studies have suggested that saponins play a role in protection from 
cancer, although given their bitter taste some saponins might not be 
desirable as components food products (Shi et al., 2004). 

3.9. Trypsin inhibitors 

Trypsin inhibitors in the diet inhibit the activities of the pancreatic 
enzymes trypsin and chymotrypsin, thereby reducing the levels of 
digestion and absorption of dietary proteins, as well as causing 
pancreatic hyperplasia. Thus, it is necessary to process crops that 
contain trypsin inhibitors, such as grain legumes (Savelkoul, Van Der 
Poel, & Tamminga, 1992). The trypsin inhibition activities, expressed in 

trypsin inhibition units (TIU) per mg of DW, of the tested fava bean 
cultivars ranged from 1.2 TIU/mg DW for cultivar Lynx to 23.1 TIU/mg 
DW for cultivar Banquise (Table 4). Of the fifteen cultivars analyzed, six 
had trypsin activities > 10 TIU/mg. These six cultivars showed higher 
levels of activity than the values previously reported for fava beans by 
different groups, i.e., 5.45 TIU/mg DW by Millar, Gallagher, Burke, 
McCarthy, and Barry-Ryan (2019), 5.96 TIU/mg DW by Shi, Mu, Arnt
field, and Nickerson (2017), and 7.2 TIU/mg DW by Hernández-Infante, 
Sousa, Montalvo, and Tena (1998). However, the trypsin inhibition ac
tivity seen in the present study is lower than that of soya bean, which has 
been reported to have an activity of 45.89 TIU/mg DW (Shi et al., 2017). 

3.10. Total phenolics content 

The TPC values for the fifteen different cultivars of fava bean ranged 
from 1.4 mg GAE/g in cultivar Banquise to 5.0 mg GAE/g in cultivar 
Fuego (Table 4), indicating an approximately four-fold variation in TPC 

Fig. 1. The molar ratio phytate to iron in fifteen fava bean cultivars. A molar ratio less than 0.4 indicates a high iron bioavailability (Hurrell & Egli, 2010).  

Fig. 2. The molar ratio phytate to zinc in fifteen fava bean cultivars. A molar ratio less than 5 indicates a high Zn bioavailability (EFSA, 2019).  

I.-C. Mayer Labba et al.                                                                                                                                                                                                                       



Food Research International 140 (2021) 110038

8

content among the studied genotypes. As expected, the TPC was 
significantly higher in the color-flowered cultivars (range, 2.8–5.0 mg 
GAE/g) than in the white-flowered cultivars (range, 1.4–3.2 mg GAE/g). 
The results obtained in this study are within the range of TPC values 
previously reported for fava beans by Saleh, Hassan, Mansour, Fahmy, 
and El-Bedawey (2019), but lower than the TPC values reported by 
Chaieb, González, López-Mesas, Bouslama, and Valiente (2011). Iron- 
binding polyphenols are known inhibitors of iron absorption (Brune, 
Hallberg, & Skånberg, 1991; Brune, Rossander, & Hallberg, 1989). 
However, these compounds can have positive health effects, as poly
phenols have antioxidant properties through which they counteract the 
initiation and propagation of oxidative processes (Amarowicz & Pegg, 
2008). 

3.11. Oligosaccharide analysis 

The fava bean contents of raffinose, stachyose and verbascose, 
belonging to the raffinose family of oligosaccharides (RFOs), are pre
sented in Table 5. The concentration ranges were 1.1–3.9 g/kg DW for 
raffinose, 4.4–13.7 for stachyose, and 8–15 g/kg DW for verbascose. 
Landry, Fuchs, and Hu (2016) reported a positive relationship between 
seed size in different fava bean cultivars and RFO content in 40 different 
fava beans, with a raffinose content in the range of 2.7–13.0 g/kg, a 
stachyose content of 9.0–25.0 g/kg DW, and verbascose content of 
6.7–50.3 g/kg DW. The variability in concentration of RFOs is consid
erably high among fava bean cultivars. The contents of these non- 

digestible oligosaccharides may be of concern for the human diet, 
since RFOs are known as compounds that can cause various degrees of 
flatulence and discomfort in healthy individuals, and can trigger 
symptoms of inflammatory bowel syndrome (IBS) as a result of their 
fermentation by anaerobic microorganisms in the digestive tract 
(Shepherd, Parker, Muir, & Gibson, 2008). On the other hand, RFOs are 
prebiotics that can provide positive health effects for the consumer, such 
as increasing the bifidobacterial population in the gut, promoting min
eral absorption, improving the immune system response, and decreasing 
risk factors associated with obesity, metabolic syndrome and colon 
cancer (Johnson, Thavarajah, Combs, & Thavarajah, 2013; Mussatto & 
Mancilha, 2007; Rastall, 2013). Even a low level of RFOs can help to 
improve the acceptability of grain legumes as food products. 

3.12. Selection of fava bean varieties 

The results presented in this study demonstrate the substantial 
compositional variations that can exist within a single plant species, 
with both nutritional and antinutritional compounds showing a broad 
spectrum of contents. Large variations in nutritional components be
tween cultivars also reveal the difficulties associated with choosing the 
appropriate crop for a specific geographic area or for specific soil 
properties. Also, weather conditions can affect the nutritional quality of 
a crop. For example, during the growing season of the fava beans for this 
study, it was unusually dry and warm which might have affected the 
level of several compounds. Rather than simply considering protein 
yields, from the nutritional viewpoint, it is better to adopt a broader 
perspective that includes both nutritional and antinutritional factors. 
Identifying the most important factors depends on the end-product and 
whether one is considering a whole bean or a highly processed end- 
product, such as extruded protein, where the levels of several anti
nutritional factors and nutrients are affected. In the cases of vicine and 
convicine, which exert severe hemotoxic effects on individuals with 
favism, the importance of in-depth knowledge of the nutritional and 
food technologies within the food industry is exemplified. The preva
lence of favism varies with geographic area, ranging from 16% in 
tropical Africa to 1% in Europe (WHO, 1989). Thus, depending on the 
consumer, it will be more or less important to limit the levels of these 
compounds through the use of appropriate cultivars and post-harvest 
processing. 

In the context of a dietary protein shift from resource-demanding 
animal products to a diet that is higher in plant-based products, 
consuming a variety of plant proteins, including grain legumes that have 
a high content of lysine, is essential to ensure adequate overall amino 
acid intake (Mariotti, 2017). Another aspect of protein quality is di
gestibility, which is negatively affected by the antinutrients present in 

Table 4 
Antinutrient composition of the 15 fava bean cultivars.  

Cultivar Vicine Convicine Lectin Saponins TPC TIU 

Alexia 5647±208 2032±56 n/a 87.1±0.7 2.8±0.06 3.6±0.10 

Birgit 5859±102 2109±52 1.6 32.1±0.7 3.4±0.07 11.6±0.28 

Boxer 6818±111 2707±37 n/a 24.5±1.3 3.7±0.27 5.5±0.22 

Daisy 4285±79 1784±34 0.8 32.3±2.8 3.6±0.08 6.1±0.07 

Emilia 403±5.9 35.8±10 0.8 24.9±0.4 3.3±0.06 3.9±0.9 

FanFare 6185±106 2637±46 0.8 59.7±1.0 4.7±0.03 14.3±0.06 

Fuego 6102±72 2366±35 1.6 45.5±1.6 5.0±0.06 13.7±0.06 

Lynx 5251±10 2319±5 3.2 42.3±0.6 4.7±0.02 1.2±0.06 

Stella 3848±263 1360±6 0.8 37.4±2.4 4.0±0.26 3.8±0.45 

Tiffany 1185±48 378±6 0.8 30.5±9.5 4.0±0.03 10.8±0.85 

Banquise 4995±114 3121±47 3.2 18.3±1.5 1.4±0.01 23.1±1.11 

Fernando 6415±96 2188±24 0.8 86.8±4.3 2.3±0.04 4.5±0.85 

Gloria 7014±67 1906±16 0.8 59.5±3.5 1.8±0.02 12.0±0.60 

Sunrise 5499±92 2039±12 0.8 109.0±1.9 1.7±0.01 1.9±0.08 

Taifun 6389±110 2766±37 3.2 71.0±1.6 1.6±0.03 4.2±0.28 

Average of triplicates ± SD. Vicine, convicine and saponins are presented as ug/g, lectin as hemagglutinin units (HU)/mg, total phenolic content (TPC) as mg gaelic 
acid equivalents (GAE)/g and trypsin inhibitor as trypsin inhibiting units (TIU)/mg. Data is presented on a dry weight basis. 

Table 5 
The levels of oligosaccharides raffinose, stachyose and verbascose in the 15 fava 
bean cultivars, presented as g/kg on a dry-weight (DW) basis.  

Oligosaccharide content (g/kg DW) 

Cultivar Raffinose  Stachyose  Verbascose  

Alexia 1.4 ±0.12 6.7 ±0.00 8.0 ±0.02 

Birgit 2.0 ±0.03 4.4 ±0.18 11.3 ±0.36 

Boxer 1.7 ±0.37 7.0 ±0.41 12.5 ±0.20 

Daisy 2.3 ±0.13 4.8 ±0.49 13.5 ±0.18 

Emilia 1.3 ±0.04 6.1 ±0.07 11.2 ±0.12 

FanFare 1.1 ±0.04 5.6 ±0.09 12.6 ±0.17 

Fuego 3.9 ±1.69 8.4 ±1.54 11.3 ±0.07 

Lynx 2.1 ±0.00 7.3 ±0.59 14.9 ±0.20 

Stella 1.3 ±0.10 8.9 ±0.06 10.7 ±0.53 

Tiffany 1.2 ±0.11 7.4 ±0.26 10.7 ±0.52 

Banquise 1.5 ±0.08 11.0 ±0.09 11.1 ±0.16 

Fernando 1.5 ±0.08 9.3 ±0.05 15.0 ±0.14 

Gloria 2.7 ±0.06 9.7 ±1.79 11.3 ±0.16 

Sunrise 2.4 ±0.06 7.1 ±0.20 13.6 ±0.72 

Taifun 2.8 ±0.11 13.7 ±0.30 14.6 ±0.47 

Data presented as means of duplicates ± standard deviation. 
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the food matrix. Therefore, plant protein is generally considered to have 
lower digestibility, the extent of which is affected by the processing 
method and, as demonstrated in this study, the cultivar used, due to the 
large differences in antinutritional components between varieties. Other 
factors that influence protein quality are specific demands related to the 
individual consuming the protein, such as energy balance, physiologic 
status, health status, and age (Millward, Layman, Tomé, & Schaafsma, 
2008). 

Grain legumes are often highlighted as a replacement for meat 
products. In this case, the content of iron and zinc and their relative 
bioavailabilities are factors that should play significant roles, given that 
legumes are important sources of iron and zinc in a plant-based diet. 
Since vegetarians have a higher risk of developing low iron stores, as 
compared to non-vegetarians (Pawlak, Berger, & Hines, 2018), partly 
due to the lower bioavailability of non-heme iron caused by antinutri
tional components (phytate, polyphenols), iron should receive greater 
attention when it comes to sustainable dietary patterns. Cultivars with a 
high Phy:Fe molar ratio can be expected to contribute only marginally to 
the absorbed iron. With this in mind, cultivars such as Sunrise that show 
low Phy:Fe and Phy:Zn molar ratios are most suitable for human con
sumption. However, the end application and agricultural aspects need to 
be taken into account when selecting the plant variety. 

4. Conclusions 

This study provides an analysis of the nutritional and antinutritional 
composition of fifteen different varieties of fava bean cultivated in the 
same region and during the same growth season. The results indicate 
substantial differences between cultivars in relation to their contents of 
nutrients and antinutrients, leading to variations in bioavailability of 
nutrients such as iron and zinc between the cultivars. The nutritional 
gain from consuming fava beans is affected by the cultivar chosen as the 
food source. Of the analyzed cultivars, only one (Sunrise) showed a high 
bioavailability of iron and zinc. This is a major dietary concern when 
facing a large shift in dietary preferences into a more plant based food 
pattern, especially for groups at risk of developing iron and zinc defi
ciency. However, the Sunrise cultivar did not have the highest protein 
content, illustrating the need to look beyond protein when considering a 
dietary shift. From a large-scale societal perspective, it is important to 
make well-informed decisions based on nutritional knowledge when 
contemplating a dietary shift, in order to avoid potential harms, such as 
an increased prevalence of iron deficiency. These decisions include 
choosing the right cultivar, as well as using processing methods aimed at 
lowering the level of phytate. 
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