150 research outputs found
Information requirements for guidance and control systems
Control or guidance system performance dependency on information handling by subsystem
The design of an experiment to determine the limitations imposed on a multiple-aperture antenna system by propagation phenomena third quarterly report, 1 dec. 1964 - 28 feb. 1965
Antenna array experiment to determine propagation path limitations on multiple aperture radio antenna
Modern optical astronomy: technology and impact of interferometry
The present `state of the art' and the path to future progress in high
spatial resolution imaging interferometry is reviewed. The review begins with a
treatment of the fundamentals of stellar optical interferometry, the origin,
properties, optical effects of turbulence in the Earth's atmosphere, the
passive methods that are applied on a single telescope to overcome atmospheric
image degradation such as speckle interferometry, and various other techniques.
These topics include differential speckle interferometry, speckle spectroscopy
and polarimetry, phase diversity, wavefront shearing interferometry,
phase-closure methods, dark speckle imaging, as well as the limitations imposed
by the detectors on the performance of speckle imaging. A brief account is
given of the technological innovation of adaptive-optics (AO) to compensate
such atmospheric effects on the image in real time. A major advancement
involves the transition from single-aperture to the dilute-aperture
interferometry using multiple telescopes. Therefore, the review deals with
recent developments involving ground-based, and space-based optical arrays.
Emphasis is placed on the problems specific to delay-lines, beam recombination,
polarization, dispersion, fringe-tracking, bootstrapping, coherencing and
cophasing, and recovery of the visibility functions. The role of AO in
enhancing visibilities is also discussed. The applications of interferometry,
such as imaging, astrometry, and nulling are described. The mathematical
intricacies of the various `post-detection' image-processing techniques are
examined critically. The review concludes with a discussion of the
astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics,
2002, to appear in April issu
Schools, families, and social reproduction
Neoliberal educational discourse across the Global North is marked by an increasing homogeneity, but this masks significant socio-spatial differences in the enactment of policy. The authors focus on four facets of roll-out neoliberalism in English education policy that have expanded the function of primary schools, and redrawn the boundary between state and family responsibilities. Specifically, these are increased state support for: (1) working parenthood through provision of wraparound childcare; (2) parent-child relationships through school-led provision of parenting classes; (3) parental involvement in children’s learning; and (4) child development through schools’ fostering of extracurricular activities. The politics of policies that both enhance state responsibility for, and influence in, matters that were previously within the purview of families are complex. The collective impact of these developments has been both to reform how the work of daily and generational social reproduction is done, and to reshape the social reproduction of a classed and gendered society
Amplified B Lymphocyte CD40 Signaling Drives Regulatory B10 Cell Expansion in Mice
Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG)) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22(-/-)) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TG)CD22(-/-) mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.CD154(TG)CD22(-/-) mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TG)CD22(-/-) mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TG)CD22(-/-) mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×10(6)±6 in CD154(TG)CD22(-/-) mice; 1.7×10(6)±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×10(6)±3 in CD154(TG)CD22(-/-) mice; 6.1×10(6)±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans
Inhibition of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations and Ca2+ Dysregulation in Aged Rats
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling
Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity
<p>Abstract</p> <p>Background</p> <p>Influenza viruses are a major cause of morbidity and mortality worldwide. Vaccination remains a powerful tool for preventing or mitigating influenza outbreaks. Yet, vaccine supplies and daily administration capacities are limited, even in developed countries. Understanding how such constraints can alter the mitigating effects of vaccination is a crucial part of influenza preparedness plans. Mathematical models provide tools for government and medical officials to assess the impact of different vaccination strategies and plan accordingly. However, many existing models of vaccination employ several questionable assumptions, including a rate of vaccination <it>proportional </it>to the population at each point in time.</p> <p>Methods</p> <p>We present a SIR-like model that explicitly takes into account vaccine supply and the <it>number </it>of vaccines administered per day and places data-informed limits on these parameters. We refer to this as the <it>non-proportional </it>model of vaccination and compare it to the proportional scheme typically found in the literature.</p> <p>Results</p> <p>The proportional and non-proportional models behave similarly for a few different vaccination scenarios. However, there are parameter regimes involving the vaccination campaign duration and daily supply limit for which the non-proportional model predicts smaller epidemics that peak later, but may last longer, than those of the proportional model. We also use the non-proportional model to predict the mitigating effects of variably timed vaccination campaigns for different levels of vaccination coverage, using specific constraints on daily administration capacity.</p> <p>Conclusions</p> <p>The non-proportional model of vaccination is a theoretical improvement that provides more accurate predictions of the mitigating effects of vaccination on influenza outbreaks than the proportional model. In addition, parameters such as vaccine supply and daily administration limit can be easily adjusted to simulate conditions in developed and developing nations with a wide variety of financial and medical resources. Finally, the model can be used by government and medical officials to create customized pandemic preparedness plans based on the supply and administration constraints of specific communities.</p
- …