74 research outputs found

    Selective uptake of ricin A-chain by hepatic non-parenchymal cells in vitro Importance of mannose oligosaccharides in the toxin

    Get PDF
    AbstractFree ricin A-chain was actively taken up in vitro by rat liver non-parenchymal cells but not by parenchymal cells. A-chain uptake by non-parenchymal cells could be selectively inhibited by D-mannose, L-fucose or ovalbumin and was markedly decreased after partial removal of mannose residues from the oligosaccharides present in the glycoprotein by enzymic deglycosylation. Uptake of free ricin B-chain by non-parenchymal cells was greater than that by parenchymal cells but in both cases was little influenced by enzymic deglycosylation of the glycoprotein. The results are consistent with mannose receptor recognition of ricin A-chain by non-parenchymal cells and have important implications for the clinical use in vivo of antibody-ricin A-chain conjugates in cancer therapy

    Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While dendritic cells (DCs) can induce tolerance in T cells, little is known about tolerance induction in DCs themselves. We have analysed tolerance induced in human <it>in-vitro </it>generated DCs by repeated stimulation with ligands for TLR4 and TLR2.</p> <p>Results</p> <p>DCs stimulated with the TLR4 ligand LPS did show a rapid and pronounced expression of TNF mRNA and protein. When DCs were pre-cultured for 2 days with 5 ng LPS/ml then the subsequent response to stimulation with a high dose of LPS (500 ng/ml) was strongly reduced for both TNF mRNA and protein. At the promoter level there was a reduced transactivation by the -1173 bp TNF promoter and by a construct with a tetrameric NF-κB motif. Within the signalling cascade leading to NF-κB activation we found an ablation of the IRAK-1 adaptor protein in LPS-tolerant DCs. Pre-culture of DCs with the TLR2 ligand Pam3Cys also led to tolerance with respect to TNF gene expression and IRAK-1 protein was ablated in such tolerant cells as well, while IRAK-4 protein levels were unchanged.</p> <p>Conclusion</p> <p>These data show that TLR-ligands can render DCs tolerant with respect to TNF gene expression by a mechanism that likely involves blockade of signal transduction at the level of IRAK-1.</p

    T-cell contact-dependent regulation of CC and CXC chemokine production in monocytes through differential involvement of NFκB: implications for rheumatoid arthritis

    Get PDF
    We and others have reported that rheumatoid arthritis (RA) synovial T cells can activate human monocytes/macrophages in a contact-dependent manner to induce the expression of inflammatory cytokines, including tumour necrosis factor alpha (TNFα). In the present study we demonstrate that RA synovial T cells without further activation can also induce monocyte CC and CXC chemokine production in a contact-dependent manner. The transcription factor NFκB is differentially involved in this process as CXC chemokines but not CC chemokines are inhibited after overexpression of IκBα, the natural inhibitor of NFκB. This effector function of RA synovial T cells is also shared by T cells activated with a cytokine cocktail containing IL-2, IL-6 and TNFα, but not T cells activated by anti-CD3 cross-linking that mimics TCR engagement. This study demonstrates for the first time that RA synovial T cells as well as cytokine-activated T cells are able to induce monocyte chemokine production in a contact-dependent manner and through NFκB-dependent and NFκB-independent mechanisms, in a process influenced by the phosphatidyl-inositol-3-kinase pathway. Moreover, this study provides further evidence that cytokine-activated T cells share aspects of their effector function with RA synovial T cells and that their targeting in the clinic has therapeutic potential

    High-efficiency gene transfer into nontransformed cells: utility for studying gene regulation and analysis of potential therapeutic targets

    Get PDF
    The elucidation of the signalling pathways involved in inflammatory diseases, such as rheumatoid arthritis, could provide long sought after targets for therapeutic intervention. Gene regulation is complex and varies depending on the cell type, as well as the signal eliciting gene activation. However, cells from certain lineages, such as macrophages, are specialised to degrade exogenous material and consequently do not easily transfect. Methods for high-efficiency gene transfer into primary cells of various lineages and disease states are desirable, as they remove the uncertainties associated with using transformed cell lines. Significant research has been undertaken into the development of nonviral and viral vectors for basic research, and as vehicles for gene therapy. We briefly review the current methods of gene delivery and the difficulties associated with each system. Adenoviruses have been used extensively to examine the role of various cytokines and signal transduction molecules in the pathogenesis of rheumatoid arthritis. This review will focus on the involvement of different signalling molecules in the production of tumour necrosis factor alpha by macrophages and in rheumatoid synovium. While the NF-kappaB pathway has proven to be a major mediator of tumour necrosis factor alpha production, it is not exclusive and work evaluating the involvement of other pathways is ongoing

    Oral activated charcoal prevents experimental cerebral malaria in mice and in a randomized controlled clinical trial in man did not interfere with the pharmacokinetics of parenteral artesunate.

    Get PDF
    BACKGROUND: Safe, cheap and effective adjunct therapies preventing the development of, or reducing the mortality from, severe malaria could have considerable and rapid public health impact. Oral activated charcoal (oAC) is a safe and well tolerated treatment for acute poisoning, more recently shown to have significant immunomodulatory effects in man. In preparation for possible efficacy trials in human malaria, we sought to determine whether oAC would i) reduce mortality due to experimental cerebral malaria (ECM) in mice, ii) modulate immune and inflammatory responses associated with ECM, and iii) affect the pharmacokinetics of parenteral artesunate in human volunteers. METHODS/PRINCIPAL FINDINGS: We found that oAC provided significant protection against P. berghei ANKA-induced ECM, increasing overall survival time compared to untreated mice (p<0.0001; hazard ratio 16.4; 95% CI 6.73 to 40.1). Protection from ECM by oAC was associated with reduced numbers of splenic TNF(+) CD4(+) T cells and multifunctional IFNgamma(+)TNF(+) CD4(+) and CD8(+) T cells. Furthermore, we identified a whole blood gene expression signature (68 genes) associated with protection from ECM. To evaluate whether oAC might affect current best available anti-malarial treatment, we conducted a randomized controlled open label trial in 52 human volunteers (ISRCTN NR. 64793756), administering artesunate (AS) in the presence or absence of oAC. We demonstrated that co-administration of oAC was safe and well-tolerated. In the 26 subjects further analyzed, we found no interference with the pharmacokinetics of parenteral AS or its pharmacologically active metabolite dihydroartemisinin. CONCLUSIONS/SIGNIFICANCE: oAC protects against ECM in mice, and does not interfere with the pharmacokinetics of parenteral artesunate. If future studies succeed in establishing the efficacy of oAC in human malaria, then the characteristics of being inexpensive, well-tolerated at high doses and requiring no sophisticated storage would make oAC a relevant candidate for adjunct therapy to reduce mortality from severe malaria, or for immediate treatment of suspected severe malaria in a rural setting. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN64793756

    Bruton's Tyrosine Kinase Is Required For Lipopolysaccharide-induced Tumor Necrosis Factor α Production

    Get PDF
    Lipopolysaccharide (LPS), a product of Gram-negative bacteria, is potent mediator of tumor necrosis factor (TNF)α production by myeloid/macrophage cells. Inhibitors capable of blocking the signaling events that result in TNFα production could provide useful therapeutics for treating septic shock and other inflammatory diseases. Broad spectrum tyrosine inhibitors are known to inhibit TNFα production, however, no particular family of tyrosine kinases has been shown to be essential for this process. Here we show that the Bruton's tyrosine kinase (Btk)-deficient mononuclear cells from X-linked agammaglobulinemia patients have impaired LPS-induced TNFα production and that LPS rapidly induces Btk kinase activity in normal monocytes. In addition, adenoviral overexpression of Btk in normal human monocytes enhanced TNFα production. We examined the role of Btk in TNFα production using luciferase reporter adenoviral constructs and have established that overexpression of Btk results in the stabilization of TNFα mRNA via the 3′ untranslated region. Stimulation with LPS also induced the activation of related tyrosine kinase, Tec, suggesting that the Tec family kinases are important components for LPS-induced TNFα production. This study provides the first clear evidence that tyrosine kinases of the Tec family, in particular Btk, are key elements of LPS-induced TNFα production and consequently may provide valuable therapeutic targets for intervention in inflammatory conditions

    K21-Antigen: A Molecule Shared by the Microenvironments of the Human Thymus and Germinal Centers

    Get PDF
    The mouse IgG1 monoclonal antibody (mAb) K21 recognizes a 230-kD molecule (K21-Ag) on Hassall's corpuscles in the human thymus. This mAb also stains cultured thymic epithelial cells as well as other epithelial cell lines, revealing a predominant intracellular localization. Further analysis with mAb K21 on other lymphoid tissues showed that it also stains cells within the germinal centers of human tonsils, both lymphoid (B) cells and some with the appearance of follicular dendritic cells. Double immunostaining of tonsil sections shows that K21-Ag is not expressed by T cells, whereas staining with anti-CD22 and -CD23 mAb revealed some doublepositive cells. A subpopulation of the lymphoid cells express the K21-Ag much more strongly. This K21++/CD23++ subpopulation of cells is localized in the apical light zone of germinal centers, suggesting that K21-Ag may be an important marker for the selected centrocytes within germinal centers and may play a role in B-cell selection and/or development of B-cell memory. Flow cytometric analysis showed that K21-Ag is expressed on the surface of a very low percentage of thymocytes, tonsillar lymphocytes, and peripheral blood mononuclear cells. Analysis of purified/separated tonsillar T and B lymphocytes showed that T cells do not express the K21-Ag; in contrast, B cells express low levels of the K21-Ag, and this together with CD23 is upregulated after mitogenic stimulation. Our data therefore raise the possibility that the K2l- Ag may play a role in B-lymphocyte activation/selection

    Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis

    Get PDF
    The innate immune system protects against infection and tissue injury through the specialized organs of the reticuloendothelial system, including the lungs, liver, and spleen. The central nervous system regulates innate immune responses via the vagus nerve, a mechanism termed the cholinergic antiinflammatory pathway. Vagus nerve stimulation inhibits proinflammatory cytokine production by signaling through the α7 nicotinic acetylcholine receptor subunit. Previously, the functional relationship between the cholinergic antiinflammatory pathway and the reticuloendothelial system was unknown. Here we show that vagus nerve stimulation fails to inhibit tumor necrosis factor (TNF) production in splenectomized animals during lethal endotoxemia. Selective lesioning of the common celiac nerve abolishes TNF suppression by vagus nerve stimulation, suggesting that the cholinergic pathway is functionally hard wired to the spleen via this branch of the vagus nerve. Administration of nicotine, an α7 agonist that mimics vagus nerve stimulation, increases proinflammatory cytokine production and lethality from polymicrobial sepsis in splenectomized mice, indicating that the spleen is critical to the protective response of the cholinergic pathway. These results reveal a specific, physiological connection between the nervous and innate immune systems that may be exploited through either electrical vagus nerve stimulation or administration of α7 agonists to inhibit proinflammatory cytokine production during infection and tissue injury

    Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease

    Get PDF
    The cause of Crohn's disease (CD) remains poorly understood. Counterintuitively, these patients possess an impaired acute inflammatory response, which could result in delayed clearance of bacteria penetrating the lining of the bowel and predispose to granuloma formation and chronicity. We tested this hypothesis in human subjects by monitoring responses to killed Escherichia coli injected subcutaneously into the forearm. Accumulation of 111In-labeled neutrophils at these sites and clearance of 32P-labeled bacteria from them were markedly impaired in CD. Locally increased blood flow and bacterial clearance were dependent on the numbers of bacteria injected. Secretion of proinflammatory cytokines by CD macrophages was grossly impaired in response to E. coli or specific Toll-like receptor agonists. Despite normal levels and stability of cytokine messenger RNA, intracellular levels of tumor necrosis factor (TNF) were abnormally low in CD macrophages. Coupled with reduced secretion, these findings indicate accelerated intracellular breakdown. Differential transcription profiles identified disease-specific genes, notably including those encoding proteins involved in vesicle trafficking. Intracellular destruction of TNF was decreased by inhibitors of lysosomal function. Together, our findings suggest that in CD macrophages, an abnormal proportion of cytokines are routed to lysosomes and degraded rather than being released through the normal secretory pathway

    Inflammatory signalling in postoperative cognitive dysfunctions

    No full text
    Major surgeries, such as cardiac or orthopaedic procedures in particular, expose the patient to extensive trauma, blood loss, and tissue injury; all of these factors effectively modulate the immune system to ultimately trigger an inflammatory response. Postoperative cognitive dysfunction (POCD), the condition being characterized by impairment of short and long-term memory, is one of common complicates following surgery. Recently, our data have demonstrated that neuroinflammation and microglia activation in the hippocampus following surgery are associated with cognitive decline. The aim of this thesis is to investigate the inflammatory signaling pathways specifically involved with POCD, with a particular interest between systemic inflammation and local inflammation in the brain following surgery. The data presented in this thesis introduce the general concepts and the involvement of inflammation in the etiology of cognitive dysfunctions using a mouse model of POCD. Upon the identification of specific pro-inflammatory markers both systemically and centrally and the delineation of the time course of events that characterize the inflammatory response following aseptic orthopaedic surgery, I describe how specific cellular signal pathways interact, mediate, and sustain this response. Following an initial non-specific approach using a general anti-inflammatory compound to identify whether inflammation plays a role in this scenario, I have exploited this model into a wide range of knockouts animals in the attempt of identifying specific signaling mechanisms and upstream receptors that mediate the behavioral abnormality following surgery. In order to achieve this, I have compared the inflammatory events after aseptic surgery with the response after a defined infectious stimulus, to ultimately joint the two in the context of a postoperative complication. In conclusion, inflammation clearly plays a pivotal role in mediating physiological as well as behavioral changes after surgery and infection. This thesis has started to unmask the signaling pathways involved with surgery and how anti-cytokine therapy can potentially ameliorate the associated cognitive dysfunction.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore