245 research outputs found

    Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities

    Get PDF
    Amyloid precursor protein (APP) and its cleavage fragment Amyloid-β (Aβ) have fundamental roles in Alzheimer’s disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aβ species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aβ species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset

    The PSEN1 E280G mutation leads to increased amyloid-β43 production in induced pluripotent stem cell neurons and deposition in brain tissue

    Get PDF
    Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer’s disease alter processing of amyloid precursor protein, leading to the generation of various amyloid-β peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-β peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-β peptide profiles and presenilin 1 protein maturity. We also compared amyloid-β peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-β ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-β ratios. Amyloid-β42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-β42:40 was not increased in the R278I line compared with controls. The amyloid-β43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-β peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer’s disease may inform our understanding of clinical heterogeneity

    Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial.

    Get PDF
    BACKGROUND: Secondary progressive multiple sclerosis, for which no satisfactory treatment presently exists, accounts for most of the disability in patients with multiple sclerosis. Simvastatin, which is widely used for treatment of vascular disease, with its excellent safety profile, has immunomodulatory and neuroprotective properties that could make it an appealing candidate drug for patients with secondary progressive multiple sclerosis. METHODS: We undertook a double-blind, controlled trial between Jan 28, 2008, and Nov 4, 2011, at three neuroscience centres in the UK. Patients aged 18-65 years with secondary progressive multiple sclerosis were randomly assigned (1:1), by a centralised web-based service with a block size of eight, to receive either 80 mg of simvastatin or placebo. Patients, treating physicians, and outcome assessors were masked to treatment allocation. The primary outcome was the annualised rate of whole-brain atrophy measured from serial volumetric MRI. Analyses were by intention to treat and per protocol. This trial is registered with ClinicalTrials.gov, number NCT00647348. FINDINGS: 140 participants were randomly assigned to receive either simvastatin (n=70) or placebo (n=70). The mean annualised atrophy rate was significantly lower in patients in the simvastatin group (0·288% per year [SD 0·521]) than in those in the placebo group (0·584% per year [0·498]). The adjusted difference in atrophy rate between groups was -0·254% per year (95% CI -0·422 to -0·087; p=0·003); a 43% reduction in annualised rate. Simvastatin was well tolerated, with no differences between the placebo and simvastatin groups in proportions of participants who had serious adverse events (14 [20%] vs nine [13%]). INTERPRETATION: High-dose simvastatin reduced the annualised rate of whole-brain atrophy compared with placebo, and was well tolerated and safe. These results support the advancement of this treatment to phase 3 testing. FUNDING: The Moulton Foundation [charity number 1109891], Berkeley Foundation [268369], the Multiple Sclerosis Trials Collaboration [1113598], the Rosetrees Trust [298582] and a personal contribution from A Pidgley, UK National Institute of Health Research (NIHR) University College London Hospitals/UCL Biomedical Research Centres funding scheme

    Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT

    Get PDF
    The alternative splicing of the tau gene, MAPT, generates six protein isoforms in the adult human CNS. Tau splicing is developmentally regulated and dysregulated in disease. Mutations in MAPT that alter tau splicing cause frontotemporal dementia (FTD) with tau pathology, providing evidence for a causal link between altered tau splicing and disease. The use of induced pluripotent stem cell (iPSC) derived neurons has revolutionized the way we model neurological disease in vitro. However, as most tau mutations are located within or around the alternatively spliced exon 10, it is important that iPSC-neurons splice tau appropriately in order to be used as disease models. To address this issue, we analysed the expression, and splicing of tau in iPSC-derived cortical neurons from control patients and FTD patients with the 10+16 intronic mutation in MAPT. We show that control neurons only express the fetal tau isoform (0N3R), even at extended time points of 100 days in vitro. Neurons from FTD patients with the 10+16 mutation in MAPT express both 0N3R and 0N4R tau isoforms, demonstrating that this mutation overrides the developmental regulation of exon 10 inclusion in our in vitro model. Further, at extended time-points of 365 days in vitro, we observe a switch in tau splicing to include six tau isoforms as seen the adult human CNS. Our results demonstrate the importance of neuronal maturity for use in in vitro modeling and provide a system that will be important for understanding the functional consequences of altered tau splicing

    Plasma tau is increased in frontotemporal dementia

    Get PDF
    BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations inGRN,MAPTandC9orf72being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life. METHODS: This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in eitherMAPT(n=12),GRN(n=9) orC9orf72(n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression. RESULTS: Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only theMAPTgroup had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration. CONCLUSION: Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only inMAPTmutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Plasma amyloid-β ratios in autosomal dominant Alzheimer's disease: the influence of genotype.

    Get PDF
    In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-β peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-β (Aβ)42:38, Aβ42:40 and Aβ38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-β processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-β between genotypes: higher Aβ42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aβ38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aβ42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-β profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aβ42:38, Aβ42:40 and Aβ38:40 ratios and parental age at onset. In vivo differences in amyloid-β processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development

    Protest Cycles and Political Process: American Peace Movements in the Nuclear Age

    Full text link
    Since the dawn of the nuclear age small groups of activists have consistently protested both the content of United States national security policy, and the process by which it is made. Only occasionally, however, has concern about nuclear weapons spread beyond these relatively marginal groups, generated substantial public support, and reached mainstream political institutions. In this paper, I use histories of peace protest and analyses of the inside of these social movements and theoretical work on protest cycles to explain cycles of movement engagement and quiescence in terms of their relation to external political context, or the "structure of political opportunity." I begin with a brief review of the relevant literature on the origins of movements, noting parallels in the study of interest groups. Building on recent literature on political opportunity structure, I suggest a theoretical framework for understanding the lifecycle of a social movement that emphasizes the interaction between activist choices and political context, proposing a six-stage process through which challenging movements develop. Using this theoretical framework I examine the four cases of relatively broad antinuclear weapons mobilization in postwar America. I conclude with a discussion of movement cycles and their relation to political alignment, public policy, and institutional politics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68552/2/10.1177_106591299304600302.pd

    Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease

    Get PDF
    Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated A beta compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by gamma-secretase and the generation of toxic beta-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials

    Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease

    Get PDF
    OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n=52), solanezumab IV (n=50), or placebo (n=40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (OR=9.1, CI[1.2, 412.3]; p=0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR=5.0, CI[1.0, 30.4]; p=0.055), as were individuals with microhemorrhage at baseline (OR=13.7, CI[1.2, 163.2]; p=0.039). No ARIA-E was observed at the initial 225mg/month gantenerumab dose, and most cases were observed at doses >675mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR>0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. This article is protected by copyright. All rights reserved
    • …
    corecore