2,927 research outputs found

    Isotope-based Fluvial Organic Carbon (\u3cem\u3eISOFLOC\u3c/em\u3e) Model: Model formulation, sensitivity, and evaluation

    Get PDF
    Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic and transported carbon composition and flux. One ISOFLOC innovation is the formulation of new stable carbon isotope model subroutines that include isotope fractionation processes in order to estimate carbon isotope source, fate, and transport. A second innovation is the coupling of transfers between carbon pools, including algal particulate organic carbon, fine particulate and dissolved organic carbon, and particulate and dissolved inorganic carbon, to simulate the carbon cycle in a comprehensive manner beyond that of existing watershed water quality models. ISOFLOC was tested and verified in a low-gradient, agriculturally impacted stream. Results of a global sensitivity analysis suggested the isotope response variable had unique sensitivity to the coupled interaction between fluvial shear resistance of algal biomass and the concentration of dissolved inorganic carbon. Model calibration and validation suggested good agreement at event, seasonal, and annual timescales. Multiobjective uncertainty analysis suggested inclusion of the carbon stable isotope routine reduced uncertainty by 80% for algal particulate organic carbon flux estimates

    EXPERIMENTAL METHODS IN CONSUMER PREFERENCE STUDIES

    Get PDF
    Controlled experimental auctions can be used to elicit preferences for food products. We describe results from two series of experiments in which subjects revealed their willingness-to-pay for safer food. In one series, the risk reduction technology was not specified; in the other, it was identified as food irradiation. The results provide some evidence on the acceptability of food irradiation as a risk reduction technology.Consumer/Household Economics,

    Reducing Equifinality Using Isotopes in a Process-Based Stream Nitrogen Model Highlights the Flux of Algal Nitrogen from Agricultural Streams

    Get PDF
    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass‐balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass‐balance subroutines and a robust GLUE‐like uncertainty analysis. We test the model in an agriculturally impacted, third‐order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development

    Carbon Sequestration by Reforesting Legacy Grasslands on Coal Mining Sites

    Get PDF
    Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored forest soils approach 2.0 MgC ha−1 y−1 initially and average 1.0 MgC ha−1 y−1 for the first fifty years after reclamation. Plant, coarse root and litter carbon sequestration rates were 2.8 MgC ha−1 y−1 with plant carbon estimated to equilibrate to 110 MgC ha−1 after forty years. Plant, root and litter carbon stocks are projected to equilibrate at an order of magnitude greater carbon storage than the existing conditions, highlighting the net carbon gain. Reforestation of legacy mine sites shows carbon sequestration potential several orders of magnitude greater than typical land sequestration strategies for carbon offsets. Projections of future scenarios provide results that show the study region could be carbon neutral or a small sink if widespread reforesting during reclamation was implemented, which is contrary to the business-as-usual projections that result in a large amount of carbon being released to the atmosphere in this region

    Abelian complexity of fixed point of morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1

    Get PDF
    We study the combinatorics of vtm, a variant of the Thue-Morse word generated by the non-uniform morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1 starting with 0. This infinite ternary sequence appears a lot in the literature and finds applications in several fields such as combinatorics on words; for example, in pattern avoidance it is often used to construct infinite words avoiding given patterns. It has been shown that the factor complexity of vtm, i.e., the number of factors of length n, is Θ(n); in fact, it is bounded by ¹⁰⁄₃n for all n, and it reaches that bound precisely when n can be written as 3 times a power of 2. In this paper, we show that the abelian complexity of vtm, i.e., the number of Parikh vectors of length n, is O(log n) with constant approaching ¾ (assuming base 2 logarithm), and it is Ω(1) with constant 3 (and these are the best possible bounds). We also prove some results regarding factor indices in vtm."F. Blanchet-Sadri and Nathan Fox’s research was supported by the National Science Foundation under Grant No. DMS–1060775." "James D. Currie and Narad Rampersad’s research was supported by NSERC Discovery grants.

    Improving In-Stream Nutrient Routines in Water Quality Models Using Stable Isotope Tracers: A Review and Synthesis

    Get PDF
    Water quality models serve as an economically feasible alternative to quantify fluxes of nutrient pollution and to simulate effective mitigation strategies; however, their applicability is often questioned due to broad uncertainties in model structure and parameterization, leading to uncertain outputs. We argue that reduction of uncertainty is partially achieved by integrating stable isotope data streams within the water quality model architecture. This article outlines the use of stable isotopes as a response variable within water quality models to improve the model boundary conditions associated with nutrient source provenance, constrain model parameterization, and elucidate shortcomings in the model structure. To assist researchers in future modeling efforts, we provide an overview of stable isotope theory; review isotopic signatures and applications for relevant carbon, nitrogen, and phosphorus pools; identify biotic and abiotic processes that impact isotope transfer between pools; review existing models that have incorporated stable isotope signatures; and highlight recommendations based on synthesis of existing knowledge. Broadly, we find existing applications that use isotopes have high efficacy for reducing water quality model uncertainty. We make recommendations toward the future use of sediment stable isotope signatures, given their integrative capacity and practical analytical process. We also detail a method to incorporate stable isotopes into multi-objective modeling frameworks. Finally, we encourage watershed modelers to work closely with isotope geochemists to ensure proper integration of stable isotopes into in-stream nutrient fate and transport routines in water quality models

    The impact of spatially associated factors upon the variability of biogeochemical tracers for soil erosion fingerprinting

    Get PDF
    Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732Fingerprinting is a field based measurement technique that unmixes eroded-soils to their sources in order to budget erosion within a watershed. This study focuses upon evaluating tracer variability across a watershed for biogeochemical tracers including nitrogen and carbon stable isotopes (15N, 13C) and the carbon to nitrogen atomic ratio (C/N). We collected 355 surface soils and analyzed them using isotope ratio mass spectrometry to statistically evaluate the significance of four spatially associated factors including: plot-location to account for tracer variability between field plots in a single land-use; slope-location to contrast floodplain versus upland tracers; profile-depth to evaluate sampling depth upon tracer variability; and soil-pit to account for tracer variability from sample replications at the same site. The Upper Palouse Watershed was chosen as the field study site due to well established agriculture and forest land-uses and consistent soil morphology within the land uses. Results of our statistical analysis showed that in the agriculture soil, plot-location, slope location, profile-depth, and soil-pit all significantly impacted the 15N and 13C signatures. In the forest soil, soil-pit dominated data variability with profile-depth and plot-location as significant to a lesser extent. C/N was less sensitive to the spatially associated factors as compared to the stable isotopes. This new knowledge of tracer variability is expected to be used in future fingerprinting studies

    Serum Metabolomics in a Helicobacter hepaticus Mouse Model of Inflammatory Bowel Disease Reveal Important Changes in the Microbiome, Serum Peptides, and Intermediary Metabolism

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the bowel. The etiology remains unknown, but IBD is immune-driven and multiple factors including genetic, environmental, and microbiological components play a role. Recombinase-activating gene-2-deficient (Rag2–/–) mice infected with Helicobacter hepaticus (H. hepaticus) have been developed as an animal model to imitate naturally occurring inflammatory events and associated key features of chronic inflammatory responses in humans. In this study, we have combined mass spectrometry-based metabolomics and peptidomics to analyze serum samples of Rag2–/– mice infected with H. hepaticus. Metabolomics profiling revealed that H. hepaticus infection dramatically changed numerous metabolite pathways, including tryptophan metabolism, glycerophospholipids, methionine-homocysteine cycle, citrate cycle, fatty acid metabolism and purine metabolism, with the majority of metabolites being down-regulated. In particular, there were notable effects of gut microflora on the blood metabolites in infected animals. In addition, the peptidomics approach identified a number of peptides, originating from proteins, including fibrinogen, complement C4, and alpha-2-macroglobulin, with diverse biological functions with potentially important implications for the progress of IBD. In summary, the strategy of integrating a relevant animal model and sensitive mass spectrometry-based profiling may offer a new perspective to explore biomarkers and provide mechanistic insights into IBD.National Institute of Environmental Health Sciences (MIT Center for Environmental Health Sciences, NIEHS grant (Grant No. ES002109))Massachusetts Institute of Technology (MIT-Merck Fellowship
    corecore