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Abstract

Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the bowel. The

etiology remains unknown, but IBD is immune-driven and multiple factors including genetic,

environmental, and microbiological components play a role. Recombinase-activating gene-2-

deficient (Rag2−/−) mice infected with Helicobacter hepaticus (H. hepaticus) have been developed

as an animal model to imitate naturally occurring inflammatory events and associated key features

of chronic inflammatory responses in humans. In this study, we have combined mass

spectrometry-based metabolomics and peptidomics to analyze serum samples of Rag2−/− mice

infected with H. hepaticus. Metabolomics profiling revealed that H. hepaticus infection

dramatically changed numerous metabolite pathways, including tryptophan metabolism,

glycerophospholipids, methionine-homocysteine cycle, citrate cycle, fatty acid metabolism and

purine metabolism, with the majority of metabolites being down-regulated. In particular, there

were notable effects of gut microflora on the blood metabolites in infected animals. In addition,

the peptidomics approach identified a number of peptides, originating from proteins, including

fibrinogen, complement C4 and alpha-2-macroglobulin, with diverse biological functions with

potentially important implications for the progress of IBD. In summary, the strategy of integrating

a relevant animal model and sensitive mass spectrometry-based profiling may offer a new

perspective to explore biomarkers and provide mechanistic insights into IBD.
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the

bowel, with more than a million patients in U.S. suffering from this debilitating disease1.

IBD significantly increases the risk of colorectal cancer in humans 2. Many factors

contribute to the occurrence and perpetuation of this disease and both genetic and

environmental factors may play an important role3,4. The etiology remains unclear, although

intestinal microbiota and host immunity are pivotal in the disease progression in the lower

bowel 5–8. Commensal enteric bacteria are important factors that drive the progression of

IBD 6; animal models have shown that intestinal bacterial flora are also important in the

development of this disease 9–11 and altered gut microflora in IBD patients are a common

component of the pathophysiology12–15.

Recombinase-activating gene-2-deficient (Rag2−/−) mice lack functional lymphocytes16 and

have been used as an animal model to investigate IBD17–19. Rag2−/− mice infected with

Helicobacter hepaticus (H. hepaticus) have been shown to emulate inflammatory events in

humans, including characteristic key features such as accumulation of macrophages and

neutrophils in the colon, generation of nitric oxide, up-regulation of inducible NO synthase

and increased expression tumor necrosis factor-alpha (TNF-alpha) 17–19.

Early detection, mechanistic insights, and development of therapeutic targets largely depend

on available biomarkers, and metabolomics is emerging as a powerful tool for characterizing

and developing biomarkers associated with human diseases, including IBD. Nuclear

magnetic resonance (NMR) and mass spectrometry (MS) are widely used to profile

metabolites in diverse biological samples, and several studies have been conducted in animal

models and IBD patients to analyze metabolites in urine, fecal extracts and biopsy samples,

with NMR being a major tool20–25. Recently, however, MS-based metabolomics profiling is

becoming attractive because of its high sensitivity, the ability to detect molecules with

diverse structures, a wide dynamic range, quantitative capability and the ease of interfacing

with other separation techniques such as gas and liquid chromatography.

In this study, we applied a liquid chromatography-mass spectrometry (LC-MS)

metabolomics approach to analyze global metabolite changes in Rag2−/− mice infected with

H. hepaticus for different time periods (10 week post-infection and 20 week post-infection).

This non-targeted metabolomics profiling revealed a notable effect of H. hepaticus infection

in Rag2−/− mice, with large numbers of metabolites being down-regulated. Our data also

clearly illustrated large effects of gut flora on blood metabolites during infection. In

addition, we have complemented our metabolomics analysis with peptidomics and identified

a number of serum peptides that originate from up-regulated proteins. These precursor

proteins, with diverse biological functions, may have important implications for the progress

of IBD.
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2. Experimental Section

Animals

Experiments were conducted in 129/SvEv Rag2−/− mice housed in the MIT Department of

Comparative Medicine in static microisolator cages and were approved by the Institutional

Animal Care and Use Committee. Each grouping was comprised of 10 mice unless

otherwise stated. Mice manipulation and histopathologic evaluation were conducted as

described previously26.

Helicobacter hepaticus

H. hepaticus (strain 3B1, ATCC 51449) was grown and the purity was confirmed as

described previously17. At age 6–8 weeks, mice were dosed with H. hepaticus by gavage

every other day for a total of 3 doses. Control mice were dosed with vehicle alone. H.

hepaticus infection was confirmed by examining cecum and colon with PCR using H.

hepaticus-specific primers. Serum and tissues were collected at 10 and 20 weeks post-

infection.

Metabolite extraction

Metabolites were isolated from serum using methanol. Internal standard stock solution

containing a synthetic peptide (10 FL) and cold methanol (80 FL) were added to 10 FL of

serum. After vortexting for 1 minute, the samples were incubated at 4 °C for 20 minutes and

then centrifuged for 10 minutes at 12,000 rpm. The supernatant was collected, dried in a

SpeedVac, and then resuspended in 30 FL of 98:2 water:acetonitrile for MS analysis.

Metabolomics profiling by LC-MS

LC-MS analyses were performed on a LC/MSD time-of-flight (TOF) mass spectrometer

from Agilent (Santa Clara, CA) with an electrospray ionization (ESI) source. The mass

spectrometer was interfaced with a 1290 Ultra Performance Liquid Chromatography system

from Agilent (Santa Clara, CA). The ESI-TOF was calibrated daily using the standard

tuning solution from the Agilent Technologies. During analyses, the instrument was

calibrated using two different reference masses with constant infusion. The typical mass

accuracy of ESI-TOF was less than 5 ppm. Metabolites were analyzed in both positive and

negative modes using a C18 T3 reverse phase column from Waters (Milford, MA). For

positive mode experiments, the mobile phases were water with 0.1% formic acid (A) or

acetonitrile with 0.1% formic acid (B). A linear gradient was run from 2% to 90% B over 60

minutes, at 200 FL/min. The ESI source parameters were: spray voltage, 3.5 kV; gas

temperature, 325 °C; drying gas, 12 L/min; nebulizer, 35 psig; fragmentor, 160 V. In

negative mode, the mobile phases were water with 1 mM ammonium fluoride (A) or

acetonitrile (B). Similarly, a linear gradient was run from 2% to 90% B over 45 minutes,

with a flow rate of 200 FL/min. The ESI source was set as follows: spray voltage, 3.0 kV;

gas temperature, 325 °C; drying gas, 11 L/min; nebulizer, 30 psig; fragmentor, 165 V.
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Data processing and analysis

Data acquired in Agilent. d format were converted to mzXML using MassHunter

Workstation software from Agilent (Santa Clara, CA). Data were filtered by intensity; only

signals with intensities larger than 1000 were considered. The converted data were

processed by both MassProfiler Professional (MPP) software (Agilent, Santa Clara, CA) and

XCMS (Scripps, La Jolla, CA) for peak picking, alignment, integration and extraction of the

peak intensities. To profile individual metabolite differences between uninfected and

infected groups, a 2-tailed Welch’s t-test was used (p < 0.05). The exact masses of

molecular features with significant changes were searched against the Human Metabolome

Database (HMDB) (http://www.hmdb.ca), METLIN (http://metlin.scripps.edu) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases (http://www.genome.jp/kegg). The

matched exact masses were stored and used for the generation of MS/MS data to further

identify the metabolites.

Metabolite identification

MS/MS was generated on an Agilent Q-TOF 6510 mass spectrometer (Santa Clara, CA) to

further confirm the identity of the metabolites. The Q-TOF was calibrated daily using the

standard tuning solution from the Agilent Technologies. The instrument was calibrated

using two different reference masses with constant infusion during the analyses. The typical

mass accuracy was less than 5 ppm. Metabolites were extracted from 30 FL of pooled serum

samples for MS/MS experiments. The column and gradients were the same as those used for

metabolite profiling by ESI-TOF. The ESI source was set as follows: spray voltage, 3.5 kV;

gas temperature, 325 °C; drying gas, 10 L/min; nebulizer, 32 psig; fragmentor, 150 V. A

target list, which included previously determined exact masses according to the database

search results, was generated for fragmentation. The retention-time differences between

ESI-TOF and Q-TOF for each compound were corrected by manual alignment.

Statistical analysis

Data analysis was conducted with multivariate statistical methods. Principle component

analysis (PCA) was performed to examine intrinsic clusters and obvious outliers within the

observations. To identify potential outliers in samples, 95% confidence interval of all

samples was used as the threshold. In addition, heat maps were generated using a

hierarchical clustering algorithm to visualize the metabolite difference within the dataset.

All data handling and statistical analysis were performed using the statistical R package.

Identification of serum peptides

The charge states of peptides with significant changes were determined from the isotope

clusters. The exact masses, charge states and corresponding retention times were used to

make a target list for Q-TOF MS/MS experiments. The collision energies were dependent on

the size and charge of peptides, ranging from 13 to 25V. The resultant tandem mass spectra

were extracted and searched against the NCBInr database with Agilent Spectrum Mill

Software (Santa Clara, CA) to identify the sequences and potentially matched proteins.

Spectrum Mill MS/MS search parameters were set as follows: database, NCBInr.fasta;

species, Mus Musculus; protein pI, 3 to 10; modification, none; digestion, no enzyme;
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precursor mass tolerance, 20 ppm; product mass tolerance, 200 ppm; batch size, 25; search

mode, identity. Peptides with Scores > 10, Scored Peak Intensity Percent (%SPI) > 65 and

Fwd-Rev Score >2 were considered tentative identification27,28 and two peptide sequences

were further validated using authentic synthetic peptides.

3. Results

3.1 Method development and LC-MS chromatograms

Figure 1 shows the experimental workflow for the initial metabolite profiling. Briefly, ten

serum samples each from uninfected or infected Rag2−/− mice were extracted and analyzed

by ESI-TOF, over a range of 80–1000m/z, in both positive and negative polarities, using a

C18 reverse phase analytical column. Molecular features, i.e., all signals associated with a

given analyte, with intensities larger than 1000 were further processed and statistically

analyzed with MPP or XCMS software to profile metabolites with significant changes (1.5

fold change, p<0.05) between the uninfected and infected animals. The resultant peak list

with exact masses was searched against metabolite databases including HMDB and

METLIN, with a 10 ppm mass accuracy threshold. Next, the matched exact masses and

associated retention times were used to generate MS/MS spectra to confirm the metabolite

identities, followed by metabolic pathway or function analysis with the KEGG database.

Figure 2 shows typical LC-ESI-TOF total-ion chromatograms of serum metabolites

extracted from uninfected and infected animals, acquired under ESI positive mode. Several

dominant compounds can be noted by inspection. For example, the intense peak eluting at

11.87 min is tryptophan. The strong peaks at 40–45 min are attributed to lysophosphatidyl

cholines (Lyso-PC). The wide peaks between 30–35 min are largely residual serum proteins

after methanol extraction.

Several peaks with different intensities, marked by asterisks in the TIC, could be readily

observed between the uninfected and infected animal, while molecular feature extraction

revealed an additional large number of metabolites with significantly-changed

concentrations. The reproducibility of the LC-MS system, with less than 20-second

retention-time shifts from run to run, facilitated good alignments within the datasets (Figure

S1). From a typical positive LC-ESI-TOF chromatogram, more than 10,000 molecular

features could be extracted (Table 1), although a given metabolite could be represented by

several different molecular features. For example, it may have several isotope peaks and

nonspecific or unknown adduct ions. Moreover, much fewer metabolites were captured by

negative ESI-TOF (Table 1); some typical total ion chromatograms are shown in Figure S2.

An initial assessment of the effect of H. hepaticus infection in Rag2−/− mice revealed a

significant effect on the metabolite profiles (Table 1). Approximately 10% and 20% of the

total features were changed for 10 week and 20 week infection groups, respectively, with the

majority (~80%) being down-regulated.

3.2 Multivariate statistical analysis

We next used multivariate statistics to examine the intrinsic clusters within each group and

whether the uninfected and infected groups could be differentiated using metabolite profiles.
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PCA revealed excellent separations of the uninfected and infected animals under both

positive and negative modes, as illustrated in Figure 3 A and 3C. The hierarchical clustering

heat maps in Figure 3B and 3D show similar patterns within each group and confirm that the

majority of metabolites were down-regulated in infected animals. A good separation was

also observed for the 10-week samples, with one animal in the uninfected group identified as

an outlier using the 95% confidence interval as the threshold (Figure S3A and S3C). The

different pattern of that sample revealed by the hierarchical clustering heat map also

supports this identification (Figure S3B and S3D). Interestingly, the metabolite features of

infected animals are more homogeneous than those of uninfected animals, as illustrated by

closer clustering in Figure 3A, suggesting that cellular responses to H. hepaticus infections

are largely driving the biology in infected animals.

3.3 Identification of metabolites

Identifying the compounds that show significant differences between the uninfected and

infected mice is the most laborious and time-consuming aspect of non-targeted

metabolomics, involving database searches with exact masses followed by interpretation of

MS/MS product-ion spectra. Figure S4 illustrates the process for the identification of

metabolites with hippuric acid as an example, which decreased 3-fold in the 20-week

infected samples. Database searching, using the exact mass at m/z 180.0645, gave 3–5 hits

depending on the database. The product-ion spectrum arising from m/z 180.0645 at 15.1 min

included characteristic hippuric acid fragments at m/z 77.0391 and m/z 105.0331 (Figure

S4). Comparison of the retention time and fragmentation pattern with an authentic standard

further confirmed the identity.

Table 2 summarizes the selected metabolites with greater than 1.5 fold changes (increase or

decrease relative to uninfected) between the uninfected and infected mice. More-complete

lists of identified metabolites in the 10 week and 20 week groups are shown in Table S1 and

S2. We identified totally 27 and 50 significantly changed metabolites in the 10 week and 20

week post-infection groups, respectively. The variety of these structures, including lipids,

amino acid derivatives, peptides, fatty acids, and nucleoside conjugates, highlight the

capability and advantages of non-targeted mass spectrometry-based metabolomics profiling.

3.4 Effect of infection period on the metabolite profile

The infection period of H. hepaticus has a significant impact on the metabolite profile in

Rag2−/− mice, which is reflected not only by a doubling of the number of changed

metabolites in the 20 week groups (Table 1), but also by larger fold changes of specific

metabolites in these mice. Figure 4 illustrates the influence of infection period on the fold

changes of some metabolites. Typically, 20-week infected samples have equivalent or higher

fold changes for the same metabolite compared to 10 week infected mice. These metabolite

changes are accompanied by the progressive development of colonic inflammation,

hyperplasia, dysplasia and colon adenocarcinoma caused by H. hepaticus infection in this

animal model17,19,26. Specifically, inflammation, edema, epithelial defects, crypt atrophy,

hyperplasia and dysplasia were common histopathologic changes for both 10-week and 20-

week infected mice, with ileocecocolic junction and proximal colon being the most severely

damaged locations. However, progression of dysplasia to intramural carcinoma was
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observed in selected 20-week H. hepaticus infected mice, which was characterized by

invasion of neoplastic glands below the muscularis mucosae layer. Portal and lobular

hepatitis were clearly identified in the liver tissues of both 10-week and 20-week H.

hepaticus infected Rag2−/− mice26. In addition, a previous study also demonstrated that H.

hepaticus infection induced progressive hepatitis in SCID/NCr mice including Kupffer, Ito,

oval cell hyperplasia and multifocal to coalescing coagulative hepatocyte necrosis29.

3.5 Effects of gut microflora on the metabolites in Rag2−/− mice infected with H. hepaticus

A number of indole derivatives were down-regulated in H. hepaticus infected Rag2−/− mice,

as shown in Figure 5A. Among these indole-containing compounds, 3-indolepropionic acid

(IPA) is of particular interest since this metabolite can only be generated by certain types of

bacteria 30,31 The decreased amount of IPA suggests that the gut microflora were perturbed

by the H. hepaticus infection. The effect of intestinal flora is further indicated by the

changes of other gut microbe-regulated metabolites including hippuric acid and

phenylacetylglycine, as illustrated in Figure 5B. Likewise, an increased amount of daidzein

suggests down-regulated metabolic activity that also involves gut bacteria, as shown in

Figure 5C. Taken together, these results clearly implicate the involvement of gut microflora

on the metabolite profiles in H. hepaticus infected Rag2−/− mice.

3.6 Altered lipid metabolism and methionine-homocysteine cycle in Rag2−/− mice infected
by H. hepaticus

N-methyl-histamine, which was synthesized by histamine N-methyltransferase using S-

adenosylmethionine (SAM) as the methyl donor, increased approximately 3-fold in infected

mice, as shown in Figure 6,. Meanwhile, we detected decreased amounts of S-

adenosylhomocysteine (SAH), which is generated by SAM during methylation. Reduced

levels of SAH, a central intermediate of the methionine-homocysteine cycle, suggests that

other methylation pathways have been inhibited during infection. Previous work established

that phosphatidylethanolamine methyltransferase (PEMT) converts

phosphatidylethanolamine (PE) to phosphatidylcholine (PC) using SAM as a methyl donor

with SAH as a by-product and accounts for 20~40% of normal hepatic PC synthesis 32. As

shown in Table 2 and Table S1–2, a number of phospholipids were significantly down-

regulated in our model. Therefore, a link may exist between altered phospholipid

metabolism and the impaired methionine-homocysteine cycle in H. hepaticus infected

Rag2−/− mice as illustrated in Figure 6.

3.7 Altered energy metabolism and fatty acid pathways

Our metabolomics profiling has shown that intermediates and cofactors of the TCA cycle

change during inflammation. Decreased citric acid (−3.69 fold) and increased flavin adenine

dinucleotide (FAD) (+1.73 fold) support the down-regulation of energy metabolism in our

model. In accordance with this observation, a number of unsaturated fatty acids decreased

upon infection, which may be the consequence of increased fatty acid oxidation induced by

oxidative stress and upregulation of peroxisomes. The interplay between energy metabolism

and fatty acid pathways is illustrated in Figure 7.
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3.8 Increased endogenous peptides in Rag2−/− mice infected by H. hepaticus

Although H. hepaticus down-regulates the majority of metabolites in Rag2−/− mice, a small

fraction of molecular features nonetheless is elevated during infection. A striking

observation was that multiply-charged ions predominated among these species, suggesting

that they were peptides, and we extended our standard metabolomics approach to

peptidomics, i.e., targeted peptide sequencing to identify potential precursor proteins which

share and, consequently, may generate, these sequences by protease processing. We again

relied on the exact masses, tandem MS/MS spectra and database searching; an example is

shown in Figure S5. Some selected peptides that were identified, as well as corresponding

presumed precursor proteins, are listed in Table 3. The annotated MS/MS spectra with

matched ions and fragments are listed in Figure S6.

4. Discussion and conclusion

A large number of metabolites were significantly changed in Rag2−/− mice following

infection with H. hepaticus, an IBD animal model, with the majority being down-regulated

in infected animals. Database searching using exact masses coupled with tandem MS/MS

analysis identified a number of significantly changed metabolites. Pathway analysis revealed

that tryptophan metabolism was the major perturbed pathway, followed by phenylalanine

and linoleic acid metabolism (Figure S7). Also, we unambiguously demonstrated the

involvement of gut microflora on the blood metabolite profiles in these animals. Moreover,

we identified many elevated serum peptides, which arise from proteins with diverse

functions and important implications for the development and progression of IBD. These

peptides are undoubtedly generated by unknown proteases in the serum.

We have found that a number of gut microbiome-regulated serum metabolites changed

during infection, which could be the consequence of impaired gut microflora induced by

enteric H. hepaticus. An elegant study using germ-free and conventional mice has revealed

the large effects of gut microflora on mammalian blood metabolites31. Another study also

found that the metabolic rate in germ-free mice is lower than in their conventional

counterparts33, highlighting the important role of gut microflora on the metabolic activity of

the host. Notably, previous studies have demonstrated that helicobacter infections perturb

the gut microflora in mice34,35. Particularly, the colonization dynamics of Altered Schaedler

Flora is influenced by H. hepaticus and H. trogontum infection in Swiss Webster mice and

B6.129P2-IL10 tm1Cgn mice, respectively34,35.

Specifically, we identified several indole-containing metabolites that decreased severalfold

in infected mice. IPA appears to be a specific indicator of imbalanced gut bacteria since a

gut bacterial metabolic process is needed to synthesize this compound 30. A recent study

identified Clostridium sporogenes as the only species, among 24 representative intestinal

flora tested, to produce IPA31. Thus, lower amounts of IPA may indicate that Clostridium

sporogenes or species with similar functions have been suppressed. Hippuric acid is another

gut bacteria-regulated metabolite, which decreased approximately 3-fold in mice infected for

20 weeks. This observation is in good agreement with previous reports of reduced hippurate

synthesis in IBD patients36. An alteration in the intestinal microbiota has been proven

responsible for the reduced synthesis of hippuric acid, although the relevant gut flora have
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not been identified 36. Another example to support the role of gut bacteria on the blood

metabolite profile is the metabolism of daidezin, i.e., its conversion to equol by intestinal

bacteria 37. The increased levels of daidezin detected in this study suggest a reduced growth

or decreased enzymatic activity of metabolizing bacteria.

The large effects of gut microflora may also be reflected by down-regulated phospholipid

synthesis. We detected a number of decreased Lyso-PCs and Lyso-PEs in the serum of

infected animals. Although synthesis and regulation of lipids are complicated, phospholipids

in blood could be impacted by the changes of gut microflora. The gut microbiota modulates

lipid metabolism, and germ-free mice have lower PC species and other phospholipids in

blood than do conventionally raised animals 38. Thus, the decreased amounts of

phospholipids in this study may mirror another aspect of the influence of gut microflora on

biochemical reactions.

We also discovered that N-methyl-histamine increased 3-fold in our animal model, which is

in accordance with the previous report that IBD patients have higher N-methyl-histamine 39.

Histamine N-methyltransferase catalyzes the methylation of histamine, primarily released

from mast cells, in the presence of SAM 39. SAM serves as a methyl donor and is involved

in methionine-homocysteine cycle. SAH is generated after losing the methyl group from

SAM and is tightly regulated by this cycle. Formation of higher amounts of N-methyl-

histamine should induce higher levels of SAH. Contrary to our expectation, SAH dropped

approximately 2 fold in infected animals. This evidence may point to other regulated methyl

transfer pathways, which also use SAM as a methyl donor. The PC synthesis via PEMT is a

major user of the methyl group of SAM and regulates plasma homocysteine 32. Inhibited

synthesis of PC from PE via methylation may contribute to decreased SAH. Thus, reduced

synthesis of PC from PE could correlate with the methionine-homocysteine cycle and

account for the down-regulation of SAH due to lower availability of SAM as a methyl

donor. There is increasing appreciation of the possible association between lipid synthesis

and methylation in human nutrition and diseases40,41. Reduced synthesis of PC contributes

to an altered methionine-homocysteine cycle, although this does not rule out the possibility

that other methylation pathways are also regulated in infected mice. In addition, an induced

expression of SAH hydrolase or inhibited SAM synthetase may also lead to a lower level of

SAH 42.

We have shown that the TCA cycle is inhibited in infected mice, as supported by a

decreased intermediate and increased cofactor. Accumulating evidence has highlighted the

important roles of gut microbiota in energy harvest and metabolism in hosts 33,43,44, which

are thought to be associated with a number of diseases such as obesity, hypertension,

diabetes and cardiovascular diseases. We detected decreased amounts of citric acid or

isocitric acid in infected animals, suggesting that the citric cycle was inhibited to some

extent. The amount of FAD concurrently increased, which is consistent with reduced citric

acid cycle, as FAD is an enzyme cofactor for the conversion of succinate to fumarate, two

intermediates of the TCA cycle. A recent report noted decreased amounts of amino acids

and metabolites of the citric acid cycle in IBD tissue samples 45, which is in a good

agreement with our observation in this animal model. There is also evidence that IBD
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patients have mitochondria with reduced functions, reduced ATP generation, and reduced

production of antioxidants46.

Significantly altered energy metabolism may also account for decreased amounts of

polyunsaturated fatty acids, including linoleic acid (LA, −2.2 fold), alpha-linoleic acid

(ALA, −1.7 fold), arachidonic acid (ARA, −3.8 fold), eicosapentaenoic acid (EPA, −2.4

fold) and docosahexaenoic acid (DHA, −1.8 fold). Germ-free mice have increased fatty acid

oxidation compared to conventionally raised mice33,47, and this may generate more acetyl-

CoA, the entry molecule for the TCA cycle, which compensates reduced energy production

in malfunctioned mitochondria or increased energy uptake during inflammation. Therefore,

lower amounts of LA and ALA, as the consequence of increased oxidation, result in

decreased amounts of other downstream fatty acids such as ARA, EPA and DHA. On the

other hand, many functions of these fatty acids are mediated through their roles as acyl

moieties of membrane phospholipids and they are released to serve as substrates for further

metabolism by several important enzymes, such as cyclooxygenases etc. Thus, a greater fold

change of ARA may point to its higher involvement in eicosanoid synthesis, which is

stimulated by chronic inflammatory responses.

Aside from the contribution of gut microflora, it should be noted that inflammation-

associated hypoxia may also play a role in defining energy demand and affecting

metabolism of related pathways as discussed above48. During inflammation, a large number

of immune cells are recruited to inflammatory lesions. Cell migration, phagocytosis,

bacterial killing and stimulated cell proliferation have high energy demands 49,50.

Neutrophils, macrophages and dendritic cells primarily use glycolytic pathways to obtain

energy, while B and T cells mainly use amino acids, glucose and lipids to generate energy

during oxidative phosphorylation 48. Nutrition and oxygen can be rapidly limited or depleted

in tissues with high inflammatory lesions and elicited immune activities. Dysregulation of

gut microflora and inflammatory hypoxia may therefore have a synergistic effect on

defining the overall outcome of energy production and uptake in H. hepaticus infected

Rag2−/− mice.

Taken together, the effects of gut microbiota on blood metabolites in the Rag2 model have

been revealed by a variety of altered metabolites and metabolic pathways, including indole-

containing compounds, glycine conjugates, lipids, critic acid and fatty acids. These

observations are in good accordance with the accumulating evidence for the role of intestinal

bacteria during the progress of IBD. A number of studies have shown that the commensal

bacteria community is disturbed in IBD, which may have significant biological

consequences on the development of this disease. Here, we provide evidence for the direct

impact of gut microflora on blood metabolites in an animal IBD model. Metabolomic

analysis of human IBD serum samples are currently under investigation in our laboratory,

which could determine whether gut microflora have the same or similar effects on blood

metabolite profiles in IBD patients as it does in these mice.

We have examined both metabolomic and peptidomic profiling in our mouse model.

Peptidomics explores the peptidome that is mechanistically linked to the proteome. We have

discovered a number of elevated peptides, which could be enzymatically processed products
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generated by proteases (Figure S8), a complex family of more than 500 enzymes. Analysis

of serum peptides offers a new perspective to explore chronic inflammatory responses and to

develop potential blood biomarkers. Specifically, pathway analysis revealed several

precursor proteins, including fibrinogen, complement C4 and alpha-macroglobulin, that

were associated with acute phase and inflammatory responses (Figure S9 A). Increases of

these acute-phase proteins is a well-documented inflammatory response of the liver to

cytokines secreted by activated neutrophils, macrophages and lymphocytes51. Through

independent analysis using multiplex sample processing, we demonstrated that fibrinogen

and alpha-2-macroglobulin were also increased in serum at the protein level. In addition,

several other serum acute phase proteins were up-regulated in our animal model (Figure S9

B). These elevated serum peptides are primarily from several common proteins, such as

fibrinogen and complement C4, which is consistent with the findings by Tempst, colleagues

and others52–54. Particularly, DTEDKGEFLSEGGGV, DTEDKGEFLSEGGGV and

TDTEDKGEFLSEGGGVR all belong to the alpha chain of fibrinogen. The difference of a

single amino acid suggests a diverse enzymatic processing by proteases. The elevated

peptides in our animal model could arise from increased acute phase protein expression, or

increased protease activities in serum or both. However, the activity of exoproteases could

mask any tissue specific or disease specific protease activity. Nevertheless, Tempst, et al.,

found tumor-specific serum peptidome patterns by differential exoprotease activities53.

Likewise, our results may also suggest a different pattern of regulated serum protease

activities in infected animals. It is well documented that protease activities are up-regulated

in tissues with ongoing inflammation in IBD. For example, a previous study, using a rat IBD

model induced by dinitrobenzenesulfonic acid, has revealed 6–10-fold increased levels of

serine protease activity in colon tissue compared to control55. Elevated levels of protease

activity in tissue samples in UC patients were also reported 55. Increased protease activities

may have a key role in eliciting increased intestinal permeability, an important

physiopathology phenomenon commonly observed in IBD patients. Currently, it remains

unclear whether serum protease activities are regulated in IBD and whether these elevated

peptides are generated in vivo, or ex vivo or both. Further investigation will shed light on

this intriguing question.

In summary, we have combined metabolomics and peptidomics to analyze serum samples of

H. hepaticus infected Rag2−/−. Metabolomic profiling revealed that H. hepaticus infection

dramatically changed many global metabolite features, with the majority of metabolites

being down-regulated. We have demonstrated the involvement of gut microflora on the

blood metabolites in infected animals. The peptidomics approach identified some elevated

peptides that share sequences with proteins having diverse biological functions and

important implications for the progress of IBD. Taken together, the strategy of integrating a

relevant animal model with sensitive MS-based profiling should provide mechanistic

insights into IBD, and may suggest potential biomarkers for the diagnosis and progression of

these disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

IBD Inflammatory bowel disease

H. hepaticus Helicobacter hepaticus

MS Mass spectrometry

LC-MS Liquid chromatography-mass spectrometry

NMR Nuclear magnetic resonance

Rag2−/− Recombinase-activating gene-2-deficient

TNF-alpha Tumor necrosis factor-alpha

TOF Time-of-flight

ESI Electrospray ionization

HMDB Human Metabolome Database

KEGG Kyoto Encyclopedia of Genes and Genomes

PCA Principle component analysis

TIC Total ion chromatogram

Lyso-PC Lysophosphatidyl cholines

SAH S-adenosylhomocysteine

SAM S-adenosylmethionine

PE Phosphatidylethanolamine

PC Phosphatidylcholine

IPA 3-indolepropionic acid

LA Linoleic acid

ALA Alpha-linoleic acid

ARA Arachidonic acid

EPA Eicosapentaenoic acid

DHA Docosahexaenoic acid

PLA2 Phospholipase A2

FAD Flavin adenine dinucleotide

(PEMT) Phosphatidylethanolamine methyltransferase
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PP6 Serine/threonine-protein phosphatase 6
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Figure 1.
The experimental workflow for the metabolite profiling performed in this study. It starts

with the metabolite extraction with methanol, followed by MS profiling under both positive

and negative ionization modes, data processing, statistical analysis, database search,

metabolite identification by tandem MS/MS and pathway analysis.
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Figure 2.
Typical LC-ESI-TOF total ion chromatograms of serum metabolites extracted from

uninfected (A) and infected animals (20 week post-infection) (B). Data were acquired under

positive ionization mode (80–1000 m/z).
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Figure 3.
Separation of uninfected and infected 20 week Rag2−/− mice by principle component

analysis (A. positive-ESI; C. negative-ESI) and the hierarchical clustering heat maps

constructed using molecular features with 1.5 fold changes (p<0.05) (B. positive-ESI; D.

negative-ESI). The ellipses represent 95% confidence interval of the uninfected (Red),

infected (Green) and all samples (Grey), respectively.
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Figure 4.
The effect of the length of H. hepaticus infection on fold changes of typical metabolites in

Rag2−/− mice relative to the uninfected groups (Fold change: + represents up-regulated

metabolites in infected animals, while – denotes down-regulated metabolites in infected

animals). Mice infected for 20 weeks have equivalent or higher fold changes for the same

metabolites compared to ten-week infected mice.
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Figure 5.
The effect of gut microflora on blood metabolites in H. hepaticus infected Rag2−/− mice.

(A.) Indole-containing metabolites (B.) Glycine conjugates (C.) The metabolism of Diadzein

to Equol.
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Figure 6.
The potential link between altered phospholipid metabolism and disturbed methionine-

homocysteine cycle in H. hepaticus infected Rag2−/− mice.
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Figure 7.
Inhibited citric acid cycle and altered fatty acid pathways in H. hepaticus infected Rag2−/−

mice. Linoleic acid: LA, alpha-linoleic acid: ALA, arachidonic acid: ARA, eicosapentaenoic

acid: EPA, docosahexaenoic acid: DHA, phospholipase A2: PLA2, flavin adenine

dinucleotide: FAD.
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Table 3

Selected identified peptides that significantly elevated in H. hepaticus infected Rag2−/− mice 20 week post-

infection and their corresponding protein sources.

Peptide sequence Score Fold Protein

(T)TDTEDKGEFLSEGGGV(R) 98 +3.3 Fibrinogen, alpha polypeptide isoform 2

(T)TDTEDKGEFLSEGGGVR(G) 89 +2.1 Fibrinogen, alpha polypeptide isoform 2

(T)DTEDKGEFLSEGGGV(R) 80 +2.6 Fibrinogen, alpha polypeptide isoform 2

(A)ADDDYDEPTDSLDA(R) 96 +2.7 Fibrinogen, beta chain precursor

(A)DDPSVPLQPVTPLQLFEGRRS(R) 78 +4.3 Complement C4

(K)ALSFYQPRAPSAEVEMTAYVLLAYLTSESSRPT(R) 84 +2.1 Alpha-2-macroglobulin

(V)PQINDALGADESLLNRLYGFLQSGDSLNPLLASF(F) 73 +2.1 Serine/threonine-protein phosphatase 6 regulatory subunit 1

(Q)QPPQPEGEEDASDGGRKRGQAGWEGGYPE(I) 68 +2.4 Myc-induced SUN domain containing protein
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