20 research outputs found
Trends in Outcomes for Neonates Born Very Preterm and Very Low Birth Weight in 11 High-Income Countries
Objective
To evaluate outcome trends of neonates born very preterm in 11 high-income countries participating in the International Network for Evaluating Outcomes of neonates. Study design In a retrospective cohort study, we included 154 233 neonates admitted to 529 neonatal units between January 1, 2007, and December 31, 2015, at 24(0/7) to 31(6/7) weeks of gestational age and birth weight <1500 g. Composite outcomes were in-hospital mortality or any of severe neurologic injury, treated retinopathy of prematurity, and bronchopulmonary dysplasia (BPD); and same composite outcome excluding BPD. Secondary outcomes were mortality and individual morbidities. For each country, annual outcome trends and adjusted relative risks comparing epoch 2 (2012-2015) to epoch 1 (2007-2011) were analyzed.
Results
For composite outcome including BPD, the trend decreased in Canada and Israel but increased in Australia and New Zealand, Japan, Spain, Sweden, and the United Kingdom. For composite outcome excluding BPD, the trend decreased in all countries except Spain, Sweden, Tuscany, and the United Kingdom. The risk of composite outcome was lower in epoch 2 than epoch 1 in Canada (adjusted relative risks 0.78; 95% CI 0.74-0.82) only. The risk of composite outcome excluding BPD was significantly lower in epoch 2 compared with epoch 1 in Australia and New Zealand, Canada, Finland, Japan, and Switzerland. Mortality rates reduced in most countries in epoch 2. BPD rates increased significantly in all countries except Canada, Israel, Finland, and Tuscany.
Conclusions
In most countries, mortality decreased whereas BPD increased for neonates born very preterm
Recommended from our members
Persistent El Niño driven shifts in marine cyanobacteria populations.
In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations
Persistent El Niño driven shifts in marine cyanobacteria populations.
In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations
Persistent El Niño driven shifts in marine cyanobacteria populations.
In the California Current Ecosystem, El Niño acts as a natural phenomenon that is partially representative of climate change impacts on marine bacteria at timescales relevant to microbial communities. Between 2014-2016, the North Pacific warm anomaly (a.k.a., the "blob") and an El Niño event resulted in prolonged ocean warming in the Southern California Bight (SCB). To determine whether this "marine heatwave" resulted in shifts in microbial populations, we sequenced the rpoC1 gene from the biogeochemically important picocyanobacteria Prochlorococcus and Synechococcus at 434 time points from 2009-2018 in the MICRO time series at Newport Beach, CA. Across the time series, we observed an increase in the abundance of Prochlorococcus relative to Synechococcus as well as elevated frequencies of ecotypes commonly associated with low-nutrient and high-temperature conditions. The relationships between environmental and ecotype trends appeared to operate on differing temporal scales. In contrast to ecotype trends, most microdiverse populations were static and possibly reflect local habitat conditions. The only exceptions were microdiversity from Prochlorococcous HLI and Synechococcus Clade II that shifted in response to the 2015 El Niño event. Overall, Prochlorococcus and Synechococcus populations did not return to their pre-heatwave composition by the end of this study. This research demonstrates that extended warming in the SCB can result in persistent changes in key microbial populations
Extensive Rangewide Mitochondrial Introgression Indicates Substantial Cryptic Hybridization in the Golden-winged Warbler (Vermivora chrysoptera)
Widespread population declines of the Golden-winged Warbler (Vermivora chrysoptera) are thought to be due in part to hybridization with the expanding Blue-winged Warbler (V. pinus), which predictably replaces Golden-winged Warblers at breeding sites in which the two species come into contact. However, the mechanism by which this replacement occurs remains unresolved. Recent genetic work has indicated that, even in areas where the two species have been in contact for a short period, introgression of Blue-winged mitochondrial (mtDNA) and nuclear genes into Golden-winged individuals is common. To explore this process on a broader scale, we screened more than 750 individuals from nine U.S. states and three provinces to examine geographic patterns of mtDNA introgression. The only population in which all phenotypic Golden-winged Warblers had Golden-winged mtDNA haplotypes, and in which there are no breeding Blue-winged or hybrid individuals, was in the province of Manitoba, near the northwestern edge of the species' breeding distribution. The near ubiquity of mitochondrial introgression suggests that there are far fewer genetically pure populations of Golden-winged Warblers than previously believed, a finding with important implications for this threatened species
'Big issues' in neurodevelopment for children and adults with congenital heart disease
It is established that neurodevelopmental disability (NDD) is common in neonates undergoing complex surgery for congenital heart disease (CHD); however, the trajectory of disability over the lifetime of individuals with CHD is unknown. Several â € big issues' remain undetermined and further research is needed in order to optimise patient care and service delivery, to assess the efficacy of intervention strategies and to promote best outcomes in individuals of all ages with CHD. This review article discusses â € gaps' in our knowledge of NDD in CHD and proposes future directions