125 research outputs found

    Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems

    Get PDF
    Future climate change will likely represent a major stress to shallow aquatic and coastal marine communities around the world. Most climate change research, particularly in regards to increased pCO2 and ocean acidification, relies on ex situ mesocosm experimentation, isolating target organisms from their environment. Such mesocosms allow for greater experimental control of some variables, but can often cause unrealistic changes in a variety of environmental factors, leading to “bottle effects.” Here we present an in situ technique of altering dissolved pCO2within nearshore benthic communities (e.g., macrophytes, algae, and/or corals) using submerged clear, open-top chambers. Our technique utilizes a flow-through design that replicates natural water flow conditions and minimizes caging effects. The clear, open-top design additionally ensures that adequate light reaches the benthic community. Our results show that CO2 concentrations and pH can be successfully manipulated for long durations within the open-top chambers, continuously replicating forecasts for the year 2100. Enriched chambers displayed an average 0.46 unit reduction in pH as compared with ambient chambers over a 6-month period. Additionally, CO2 and HCO3 – concentrations were all significantly higher within the enriched chambers. We discuss the advantages and disadvantages of this technique in comparison to other ex situ mesocosm designs used for climate change research

    Stable isotopes reveal complex changes in trophic relationships following nutrient addition in a coastal marine ecosystem

    Get PDF
    Complex links between the top-down and bottomup forces that structure communities can be disrupted by anthropogenic alterations of natural habitats.We used relative abundance and stable isotopes to examine changes in epifaunal food webs in seagrass (Thalassia testudinum) beds following 6 months of experimental nutrient addition at two sites in Florida Bay (USA) with different ambient fertility. At a eutrophic site, nutrient addition did not strongly affect food web structure, but at a nutrient-poor site, enrichment increased the abundances of crustacean epiphyte grazers, and the diets of these grazers became more varied. Benthic grazers did not change in abundance but shifted their diet away from green macroalgae + associated epiphytes and towards an opportunistic seagrass (Halodule wrightii) that occurred only in nutrient addition treatments. Benthic predators did not change in abundance, but their diets were more varied in enriched plots. Food chain length was short and unaffected by site or nutrient treatment, but increased food web complexity in enriched plots was suggested by increasingly mixed diets. Strong bottom-up modifications of food web structure in the nutrient-limited site and the limited top-down influences of grazers on seagrass epiphyte biomass suggest that, in this system, the bottom-up role of nutrient enrichment can have substantial impacts on community structure, trophic relationships, and, ultimately, the productivity values of the ecosystem

    Mechanisms of Bicarbonate Use Influence the Photosynthetic Carbon Dioxide Sensitivity of Tropical Seagrasses

    Get PDF
    The photosynthetic bicarbonate () use properties of three widely distributed tropical seagrasses were compared using a series of laboratory experiments. Photosynthetic rates of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were monitored in an enclosed chamber while being subjected to shifts in pH and dissolved inorganic carbon. Specific mechanisms of seagrass use were compared by examining the photosynthetic effects of the carbonic anhydrase inhibitor acetazolamide (AZ). All seagrasses increased photosynthetic rates with reduced pH, suggesting a large effect of dissolved aqueous carbon dioxide (CO2(aq)). However, there was considerable interspecific variation in pH response. T. testudinum was highly sensitive, increasing photosynthetic rates by 100% as the pH was reduced from 8.2 to 7.4, whereas rates in H. wrightii and S. filiforme increased by only 20% over a similar range, and displayed prominent photosynthetic plateaus, indicating an increased capacity for use. Additional incubations that manipulated [] under constant [CO2(aq)] support these findings, as only H. wrightii and S. filiforme increased photosynthetic rates with increasing []. T. testudinum responded to AZ addition, indicating that carbonic anhydrase enzymes facilitate limited use. H. wrightii and S. filiforme showed no response to AZ, suggesting alternate, more efficient mechanisms of use. Estimated kinetic parameters, Ks(CO2) and Vmax, revealed interspecific variation and further support these conclusions. Variation in photosynthetic pH responses and AZ sensitivity indicate distinctions in the carbon use properties of seagrasses exposed to similar environmental conditions. These results suggest that not all seagrasses will similarly respond to future increases in CO2(aq) availability. Attention towards potential shifts in competitive interactions within multispecific seagrass beds is warranted

    Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Get PDF
    The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ∼70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1) assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2) field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3) the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models

    Long-Term Effects of Adding Nutrients to an Oligotrophic Coastal Environment

    Get PDF
    Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that lowintensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years

    Negative relationships between the nutrient and carbohydrate content of the seagrass Thalassia testudinum

    Get PDF
    This study documents relationships between plant nutrient content and rhizome carbohydrate content of a widely distributed seagrass species, Thalassia testudinum, in Florida. Five distinct seagrass beds were sampled for leaf nitrogen, leaf phosphorus, and rhizome carbohydrate content from 1997 to 1999. All variables displayed marked intra- and inter- regional variation. Elemental ratios (mean N:P ± S.E.) were lowest for Charlotte Harbor (9.9 ± 0.2) and highest for Florida Bay (53.5 ± 0.9), indicating regional shifts in the nutrient content of plant material. Rhizome carbohydrate content (mean ± S.E.) was lowest for Anclote Keys (21.8 ± 1.6 mg g−1 FM), and highest for Homosassa Bay (40.7 ± 1.7 mg g−1 FM). Within each region, significant negative correlations between plant nutrient and rhizome carbohydrate content were detected; thus, nutrient-replete plants displayed low carbohydrate content, while nutrient-deplete plants displayed high carbohydrate content. Spearman\u27s rank correlations between nutrient and carbohydrate content varied from a minimum in Tampa Bay (ρ = −0.2) to a maximum in Charlotte Harbor (ρ = −0.73). Linear regressions on log-transformed data revealed similar trends. This consistent trend across five distinct regions suggests that nutrient supply may play an important role in the regulation of carbon storage within seagrasses. Here we present a new hypothesis for studies which aim to explain the carbohydrate dynamics of benthic plants

    Light Attenuation in Estuarine Mangrove Lakes

    Get PDF
    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (\u3c2 m depth) mangrove-surrounded lakes in two sub-estuaries in the coastal Everglades, Florida USA. Turbidity, chromophoric dissolved organic matter (CDOM), and phytoplankton chlorophyll a (chl a) were measured concurrently and their respective contributions to the light attenuation rate were estimated. Light transmission to the benthos relative to literature estimates of minimum requirements for SAV growth indicated that the underwater light environment was often unsuitable for SAV. Light attenuation rates (n = 417) corrected for solar elevation angles ranged from 0.16 m-1 to 9.83 m-1 with a mean of 1.73 m-1. High concentrations of CDOM with high specific light absorption contributed the most to light attenuation followed by turbidity and chl a. CDOM alone sufficiently reduces light transmission beyond the estimated limits for SAV growth, making it difficult for ecosystem managers to increase SAV abundance by management activities. Light limitation of SAV in these areas may be a persistent feature because of their proximity to CDOM source materials from the surrounding mangrove swamp. Increasing freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities

    Effect of Seagrass on Current Speed: Importance of Flexibility vs. Shoot Density

    Get PDF
    Water flow through seagrass beds transports nutrients, affects sediment stability and chemistry, and imposes hydrodynamic forces on shoots that alter canopy configuration. Past studies done under diverse conditions yielded conflicting results about the effects of shoot density on flow through seagrass bed canopies. We used eelgrass, Zostera marina, to study how the density of flexible shoots affect the hydrodynamics of seagrass beds in unidirectional water flow. By exposing randomly-arranged shoots of uniform length to current velocities controlled in a flume, the effects of shoot density and distance downstream from the bed edge could be determined without confounding factors. Comparison of velocity profiles within beds to those upstream of beds showed that flow was slower in the beds. However, shoot density, downstream distance, and current velocity did not affect the percent reduction in flow velocity in a bed. Turbulence enhances mixing of substances carried in the water. Here, turbulence intensity (index of the importance of turbulent velocity fluctuations relative to average current velocity) was lower when ambient flow was faster, but was not affected by shoot density or downstream position, Drag (hydrodynamic force on a shoot that bends it over in the flow direction) provides another measure of how the canopy affects flow experienced by a shoot. Drag was not affected by current velocity, shoot density, or downstream position in the bed. Gaps between shoots can enhance light and flow penetration into the canopy, but when shoots are bent over by flow, they can cover gaps. Faster ambient currents caused greater gap closure, which at each current speed was greater for high shoot densities. Thus, canopy gap closure did not correlate with percent flow reduction in grass beds or with drag on individual shoots, both of which were independent of shoot density and ambient current velocity. Since changing shoot density does not affect the flow in a grass bed exposed to a given ambient current, our results are inconsistent with the hypothesis that the high shoot densities observed in grass beds in habitats exposed to rapid flow are due to a direct, adaptive response of the grass to the flow environment

    Tropical seagrass-associated macroalgae distributions and trends relative to water quality

    Get PDF
    Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS

    Spatial and seasonal variability in elemental content, δ13C, and δ15N ofThalassia testudinum from South Florida and its implications for ecosystem studies

    Get PDF
    Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability
    corecore