65 research outputs found

    The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs)

    Get PDF
    Heparansulfate (HS) modifications are master regulators of the cross-talk between cell and matrix and modulate the biological activity of an array of HS binding proteins, including growth factors and chemokines, morphogens and immunity cell receptors. This review will highlight the importance of HS maturation mediated by N-deactetylase/sulfotransferases, 2O- and 6O-sulfotransferases in cancer biology, and will focus on the 3O-sulfotransferases and on the terminal, rare 3O-sulfation, and their important but still enigmatic impact in cancer progression. The review will also discuss the molecular mechanisms of action of these HS modifications with regards to ligand interactions and signaling in the cancer process and their clinical significance

    Xylosyltransferase-I Regulates Glycosaminoglycan Synthesis during the Pathogenic Process of Human Osteoarthritis

    Get PDF
    Loss of glycosaminoglycan (GAG) chains of proteoglycans (PGs) is an early event of osteoarthritis (OA) resulting in cartilage degradation that has been previously demonstrated in both huma and experimental OA models. However, the mechanism of GAG loss and the role of xylosyltransferase-I (XT-I) that initiates GAG biosynthesis onto PG molecules in the pathogenic process of human OA are unknown. In this study, we have characterized XT-I expression and activity together with GAG synthesis in human OA cartilage obtained from different regions of the same joint, defined as “normal”, “late-stage” or adjacent to “late-stage”. The results showed that GAG synthesis and content increased in cartilage from areas flanking OA lesions compared to cartilage from macroscopically “normal” unaffected regions, while decreased in “late-stage” OA cartilage lesions. This increase in anabolic state was associated with a marked upregulation of XT-I expression and activity in cartilage “next to lesion” while a decrease in the “late-stage” OA cartilage. Importantly, XT-I inhibition by shRNA or forced-expression with a pCMV-XT-I construct correlated with the modulation of GAG anabolism in human cartilage explants. The observation that XT-I gene expression was down-regulated by IL-1ÎČ and up-regulated by TGF-ÎČ1 indicates that these cytokines may play a role in regulating GAG content in human OA. Noteworthy, expression of IL-1ÎČ receptor (IL-1R1) was down-regulated whereas that of TGF-ÎČ1 was up-regulated in early OA cartilage. Theses observations may account for upregulation of XT-I and sustained GAG synthesis prior to the development of cartilage lesions during the pathogenic process of OA

    Les enzymes de biosynthĂšse des glycosaminoglycanes (Ă©tude structurale et fonctionnelle de la [bĂȘta]4GalT7 humaine et caractĂ©risation molĂ©culaire des mutations responsables du syndrome progĂ©roide d'Ehlers-Danlos)

    No full text
    Les chaĂźnes de glycosaminoglycanes (GAGs) des protĂ©oglycanes (PGs) jouent un rĂŽle majeur dans la rĂ©gulation de multiples Ă©vĂ©nements cellulaires et le maintien de l'architecture des tissus. Des perturbations de la synthĂšse des GAGs sont impliquĂ©es dans des pathologies d'origine dĂ©gĂ©nĂ©rative, tumorale et gĂ©nĂ©tique, tel que le syndrome progĂ©roĂŻde d'Ehlers-Danlos (ED). Ce dĂ©ficit rĂ©sulte de mutations de la [bĂȘta]1,4-galactosyltransfĂ©rase 7 ([bĂȘta]4GalT7) humaine associĂ©es Ă  des atteintes sĂ©vĂšres du systĂšme musculo-squelettique. En effet, cette enzyme catalyse une Ă©tape essentielle de l?initiation de la synthĂšse des GAGs Ă  partir de la protĂ©ine "core" des PGs et de xylosides exogĂšnes. Notre travail a portĂ© sur l'Ă©tude structure-fonction de la [bĂȘta]4GalT7 recombinante humaine. Nous avons associĂ© des approches in vitro et ex vivo afin d?explorer le rĂŽle des acides aminĂ©s des motifs 163DVD165, 221FWGWGREDDD230 et 257HLH259, strictement conservĂ©s au sein des [bĂȘta]4GalTs. L'Ă©tude des consĂ©quences de mutations systĂ©matiques sur les propriĂ©tĂ©s cinĂ©tiques et fonctionnelles de la [bĂȘta]4GalT7 recombinante a permis d'identifier des acides aminĂ©s essentiels du site actif. Nous avons montrĂ© que les rĂ©sidus D165 et H257 forment des liaisons de coordination avec le cation Mn2+ et proposĂ© le rĂŽle du rĂ©sidu D228 dans la catalyse. Nous avons mis en Ă©vidence un rĂŽle central du rĂ©sidu W224 dans les interactions avec les substrats donneur et accepteur. Nous avons Ă©galement Ă©tabli les bases molĂ©culaires des mutations de la [bĂȘta]4GalT7 associĂ©es au syndrome ED. Enfin, l'Ă©tude de mĂ©canismes de rĂ©gulation Ă©pigĂ©nĂ©tique des voies de biosynthĂšse des GAGs dans les cellules H-EMC-SS de chondrosarcome humain a mis en Ă©vidence une hypermĂ©thylation spĂ©cifique des gĂšnes de la famille des 3-O-sulfotransfĂ©rases, associĂ©e Ă  un phĂ©notype invasif. L'ensemble de ce travail ouvre des perspectives vers de nouvelles stratĂ©gies thĂ©rapeutiques dans le traitement des arthropathiesProteoglycans (PGs) and their glycosaminoglycan chains (GAGs), play a major role in the architecture of extracellular matrices and are implicated in numerous cell events. The impairment of GAG synthesis and sulfation is involved in degenerative, tumor and genetic diseases, such as the progeroid form of Ehlers-Danlos (ED) syndrome. This inherited disorder is due to mutations of human [bĂȘta]4GalT7 ([bĂȘta]4GalT7) causing a defect in GAG synthesis, associated with severe musculo-skeletal alterations. Indeed, this enzyme catalyzes a key step in GAG synthesis linked to the core protein of PGs and from exogenous xylosides. Our work has been focused on the structural and functional characterization of human recombinant [bĂȘta]4GalT7 enzyme. We combined in vitro and ex vivo approaches to explore the role of amino acids located in 163DVD165, 221FWGWGREDDD230 and 257HLH259 motifs, which are highly conserved within [bĂȘta]4GalTs. The study of the consequences of site-directed mutations on kinetic and functional properties of the [bĂȘta]4GalT7 enzyme allowed us to identify key active site amino acids. Our results indicate that D165 and H257 residues form coordination bonds with Mn2+ divalent cations. Furthermore, we suggested a catalytic role for D228 residue and highlighted a central role of W224 residue via interactions with the donor and acceptor substrates. We also determined the molecular basis of [bĂȘta]4GalT7 mutations associated with ED syndrome. Finally, the study of epigenetic regulation mechanisms by DNA methylation of GAG biosynthesis in human chondrosarcoma cells (H-EMC-SS) revealed the specific hypermethylation of the 3-O-sulfotransferase gene family, associated with the invasive phenotype of these cells. Together, this work paves the way towards innovative strategies in the treatment of arthropathiesNANCY1-Bib. numĂ©rique (543959902) / SudocSudocFranceF

    Exploration des enzymes de biosynthÚse des protéoglycanes et leurs altérations lors de pathologies articulaires

    No full text
    DotĂ©s d une position stratĂ©gique Ă  la surface des cellules et au sein des matrices extracellulaires, les PGs Ă  hĂ©parane-sulfates (HS) jouent un rĂŽle essentiel dans de multiples processus physiopathologiques en rĂ©gulant l activitĂ© de nombreux mĂ©diateurs solubles. Les voies de biosynthĂšse des glycosaminoglycanes (GAGs) nĂ©cessitent l action coordonnĂ©e de glycosyltransfĂ©rases (GTs) et sulfotransfĂ©rases (STs). Bien que celles-ci soient en partie caractĂ©risĂ©es, leurs mĂ©canismes de rĂ©gulation restent mal connus. Dans la premiĂšre partie de notre travail, nous avons rĂ©alisĂ© une Ă©tude structure-fonction de la ß1,4-galactosyltransfĂ©rase 7 (ß4GalT7) qui catalyse une Ă©tape clĂ© de l initiation des chaĂźnes de GAG. Nous avons identifiĂ© deux motifs D163VD165 et 221FWGWGREDDE230 strictement conservĂ©s au sein des ß4GalTs. Une approche in vitro combinĂ©e Ă  la mesure du taux de biosynthĂšse des PGs par incorporation de 35S ex vivo, a permis d Ă©valuer l impact des mutations conservative et non conservative sur les propriĂ©tĂ©s cinĂ©tiques et fonctionnelles de la ß4GalT7. Nous avons ainsi pu cerner les rĂ©sidus clĂ©s impliquĂ©s dans la reconnaissance des substrats donneur (UDP-galactose)/Mn2+, accepteur et la catalyse enzymatique. Dans un second temps, afin d explorer les mĂ©canismes de rĂ©gulation des voies de biosynthĂšse, nous avons examinĂ© les rĂ©gions situĂ©es en 5 des gĂšnes codant les GTs et STs et mis en Ă©vidence une mĂ©thylation aberrante touchant en particulier la famille des 3-OSTs, dans les cellules de chondrosarcome humain H-EMC-SS (HEMC). Cette hypermĂ©thylation provoque une diminution d expression de ces transcrits conduisant Ă  une altĂ©ration des chaĂźnes de HS, restaurĂ©e par le traitement des cellules par un agent dĂ©mĂ©thylant, la 5-aza-2 dĂ©oxycytidine. Ce traitement ainsi que la surexpression des 3-OSTs par transfert de gĂšne produit un ralentissement de la prolifĂ©ration et motilitĂ© cellulaires et une augmentation de capacitĂ© d adhĂ©sion des cellules. Ces rĂ©sultats soulignent l importance de l altĂ©ration des chaĂźnes de HS cellulaires dans le caractĂšre invasif des HEMC et suggĂšrent que la 3-O-sulfatation est un facteur contribuant Ă  ce processus. Nous avons montrĂ© pour la premiĂšre fois que les gĂšnes codant les ST Ă  HS sont rĂ©gulĂ©s par un mĂ©canisme Ă©pigĂ©nĂ©tique dans les cellules HEMC. Ces rĂ©sultats ouvrent la voie Ă  une meilleure comprĂ©hension des pathologies articulaires d origine cancĂ©reuse et permettent d envisager des stratĂ©gies thĂ©rapeutiques ciblant la mĂ©thylation de l ADN.Located at the cell-tissue-organ interface, heparan sulfate proteoglycans (HSPGs) facilitate ligand-receptor interactions crucial to many physiopathological processes. The synthesis of glycosaminoglycans (GAGs) requires the coordinated action of an array of glycosyltransferases (GTs) and sulfotransferases (STs). Although the biosynthetic scheme of HSPGs has been outlined, little is known about the regulation of this complex process. In the first part of our work, we performed structure-function studies of the human ß1,4-galactosyltransferase 7 (ß4GalT7) which catalyses a key step of the initiation of GAG synthesis and identified two conserved domains D163VD165 and 221FWGWGREDDE230 in the ß4GalT family. In vitro studies combined to ex vivo analysis of PG synthesis by 35S incorporation allowed us to determine the impact of site-directed mutations on the catalytic and functional properties of ß4GalT7. We identified key residues for donor UDP-galactose/Mn2+ and acceptor substrate binding, and catalysis. Secondarily, to investigate more in depth the mechanisms involved in the regulation of PG biosynthetic pathway, we inspected the 5 region of the genes coding for GT and ST enzymes and identified the presence of typical CpG islands with the most striking hypermethylation pattern for the 3-OST gene subfamily in the chondrosarcoma cell line H-EMC-SS (HEMC). Aberrant methylation was associated with downregulation of these genes and altered HS-GAG chains, as demonstrated both at biochemical and cellular levels. Treatment of cells with an inhibitor of DNA methyltransferases (5-aza-2 deoxycytidine) or reintroduction of 3-OST cDNA expression into HEMC cells resulted in a decrease in the proliferative and migration capacities of HEMC cells, and augmented adhesion ability of the cells. These findings underline the significance of HS alterations in the invasive phenotype of HEMC and identify 3-O-sulfation as a contributing factor to this process. We show for the first time that a specific set of HS-O-sulfotransferases is regulated via an epigenetic mechanism in HEMC cells, may be of particular relevance in understanding the process of cartilage tumor pathogenesis, towards the development of therapies targeting DNA methylation.NANCY1-Bib. numĂ©rique (543959902) / SudocSudocFranceF

    L'agrécane et le cartilage articulaire : apport des glycosyltransférases dans la réparation du cartilage arthrosique

    No full text
    L'arthrose, la maladie la plus frĂ©quente du systĂšme musculo-squelettique, est la consĂ©quence de processus mĂ©caniques et biologiques qui rompent l'homĂ©ostasie du cartilage, de la synoviale et de l'os sous-chondral. Dans le but de dĂ©velopper de nouvelles thĂ©rapeutiques efficaces, visant Ă  restaurer la matrice cartilagineuse, nous caractĂ©risons les mĂ©canismes molĂ©culaires et les protĂ©ines-clĂ©s responsables de l'initiation de la maladie. Un des Ă©vĂšnements les plus prĂ©coces est la dĂ©gradation de l'agrĂ©cane qui est le protĂ©oglycane matriciel le plus abondant. Les chaĂźnes de chondroĂŻtine sulfate liĂ©es Ă  la protĂ©ine porteuse sont dĂ©coupĂ©es en petits fragments. Le laboratoire s'intĂ©resse aux glycosyltransfĂ©rases qui catalysent la formation des chaĂźnes polysaccharidiques, en particulier celles impliquĂ©es dans la synthĂšse de l'amorce tĂ©trasaccharidique commune de liaison Ă  la protĂ©ine porteuse, GlcAÎČ\beta 1,3GalÎČ1,3GalÎČ\beta 1,4Xyl-O-SĂ©rine. La galactose ÎČ1,3-glucuronosyltransfĂ©rase-I (GlcAT-I), qui attache l'acide glucuronique terminal et qui est fortement rĂ©primĂ©e durant l'arthrose, est une cible potentiellement intĂ©ressante. En effet, l'enzyme recombinante humaine joue un rĂŽle primordial dans la synthĂšse des glycosaminoglycanes (GAG). La surexpression de la GlcAT-I dans des explants de cartilage traitĂ©s par l'IL1ÎČ\beta est capable de s'opposer complĂštement Ă  la dĂ©plĂ©tion en protĂ©oglycanes provoquĂ©es par cette cytokine pro-inflammatoire. Des Ă©tudes structure/fonction/rĂ©gulation de cette enzyme ont alors Ă©tĂ© entreprises. Les rĂ©sultats constituent les bases pour le dĂ©veloppement de plusieurs thĂ©rapeutiques basĂ©es sur la vectorisation de gĂšnes en intra-articulaire et la conception de glycomimĂ©tiques capables de rĂ©parer le cartilage
    • 

    corecore