16 research outputs found

    Enhancing tumor specific immune responses by transcutaneous vaccination.

    Get PDF
    Our understanding of the involvement of the immune system in cancer control has increased over recent years. However, the development of cancer vaccines intended to reverse tumor-induced immune tolerance remains slow as most current vaccine candidates exhibit limited clinical efficacy. The skin is particularly rich with multiple subsets of dendritic cells (DCs) that are involved to varying degrees in the induction of robust immune responses. Transcutaneous administration of cancer vaccines may therefore harness the immune potential of these DCs, however, this approach is hampered by the impermeability of the stratum corneum. Innovative vaccine formulations including various nanoparticles, such as liposomes, are therefore needed to properly deliver cancer vaccine components to skin DCs. Areas covered: The recent insights into skin DC subsets and their functional specialization, the potential of nanoparticle-based vaccines in transcutaneous cancer vaccination and, finally, the most relevant clinical trial advances in liposomal and in cutaneous cancer vaccines will be discussed. Expert commentary: To define the optimal conditions for mounting protective skin DC-induced anti-tumor immune responses, investigation of the cellular and molecular interplay that controls tumor progression should be pursued in parallel with clinical development. The resulting knowledge will then be translated into improved cancer vaccines that better target the most appropriate immune players.journal articlereviewresearch support, non-u.s. gov't2017 11importe

    Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells

    Get PDF
    In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response

    Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum

    No full text
    The ATP-binding cassette (ABC) transporters breast cancer resistance protein (BCRP), multidrug resistance-associated protein 2 (MRP2), and P-glycoprotein (Pgp) are important in the distribution and elimination of many drugs and endogenous metabolites. Due to their membrane location and hydrophobicity it is difficult to generate purified protein standards to quantify these transporters in human tissues. The present study generated transporter proteins fused with the S-peptide of ribonuclease for use as standards in immunoquantification in human liver and small intestine. Quantification of the S.tag (TM), a 15 amino acid peptide, is based on the formation of a functional ribonuclease activity upon its high affinity reconstitution with ribonuclease S-protein. S-tagged transporters were used as full-length protein standards in the immunoquantification of endogenous BCRP, MRP2, and Pgp levels in 14 duodenum and 13 liver human tissue samples. Expression levels in the duodenum were 305 +/- 248 (BCRP), 66 +/- 70 (MRP2), and 275 +/- 205 (Pgp) fmoles per cm(2). Hepatic levels were 2.6 +/- 0.9 (BCRP), 19.8 +/- 10.5 (MRP2), and 26.1 +/- 10.1 (total Pgp) pmoles per g of liver. The mean hepatic scaling factor was 35.8 mg crude membrane per g of liver, and the mean duodenal scaling factor was 1.3 mg crude membrane per cm(2) mucosal lining. Interindividual variability was greater in duodenal samples than liver samples. It is hoped that this innovative method of quantifying these transporters (and other membrane proteins) will improve in vivo-in vitro extrapolation and in silica prediction of drug absorption and elimination, thus supporting drug development. (C) 2011 Elsevier Inc. All rights reserved.</p

    Easy Derivatisation of Group 10 N-Heterocyclic Carbene Complexes and In Vitro Evaluation of an Anticancer Oestradiol Conjugate

    No full text
    In the search for novel metal-based pharmaceuticals, ruthenium-catalysed 1,3-dipolar cycloaddition is used to functionalise a series of palladium and platinum N-heterocyclic carbene complexes. This strategy was applied to the conjugation of amino acid, polyethylene glycol and oestradiol derivatives with the aim of enhancing chemical diversity and introducing specific features (e.g., water solubility, cell targeting). Antiproliferative activities of the different complexes were assayed against several cancer cell lines (KB, MCF7, HCT116, PC3, SKOV3, OVCAR8, HL60) and healthy cell lines (MRC5, VERO, EPC), which established their efficiency. The ease of the structural derivatisation thus renders these complexes attractive metal-based systems for the development of selective targeted metal-hybrid anticancer drugs

    N-Heterocyclic Carbene-Polyethyleneimine (PEI) Platinum Complexes Inducing Human Cancer Cell Death: Polymer Carrier Impact

    Get PDF
    The high interest in N-Heterocyclic platinum carbene complexes in cancer research stems from their high cytotoxicity to human cancer cells, their stability, as well as their ease of functionalization. However, the development of these new molecules as anticancer agents still faces multiple challenges, in particular solubility in aqueous media. Here, we synthesized platinum-NHC bioconjugates that combine water-solubility and cytotoxicity by using polyethyleneimine as polymer carrier. We showed on 8 different types of cells that the activity of these conjugates is modulated by the size of the polymer and the overall density of metal ions onto polymer chains. Using HCT116 cells, the conjugates displayed an effective activity after only 45 min of exposure in vitro correlated with a quick uptake by the cells as shown by the use of various fluorescent-tagged derivatives

    Multimerization of an Apoptogenic TRAIL-Mimicking Peptide by Using Adamantane-Based Dendrons

    No full text
    We have developed a straightforward strategy to multimerize an apoptogenic peptide that mimics the natural tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) by using adamantane‐based dendrons as multivalent scaffolds. The selective binding affinity of the ligands to TRAIL receptor 2 (TR2) was studied by surface plasmon resonance, thus demonstrating that the trimeric and hexameric forms of the peptide exert an increased affinity of about 1500‐ and 20 000‐fold, respectively, relative to the monomer. Moreover, only the trimeric and hexameric ligands were able to induce cell death in TR2 expressing cells (BJAB), thus confirming that a multivalent form of the peptide is necessary to trigger a substantial TR2‐dependent apoptotic response in vitro. These results provide interesting insight into the multivalency effect on biological ligand/receptor interactions for future therapeutic applications

    Liposomes as tunable platform to decipher the antitumor immune response triggered by TLR and NLR agonists

    Get PDF
    Liposomes are powerful tools for the optimization of peptides and adjuvant composition in cancer vaccines. Here, we take advantage of a liposomal platform versatility to develop three vaccine candidates associating a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant. Liposomal vaccine containing MPLA (TLR4 liposomes), are the most effective treatment against the HPV-transformed orthotopic lung tumor mouse model, TC-1. This vaccine induces a potent Th1-oriented antitumor immunity, which lead to a significant reduction in tumor growth and a prolonged survival of mice, even when injected after tumor appearance. This efficacy is dependent on CD8+ T cells. Subcutaneous injection of this treatment induces the migration of skin DCs to draining lymph nodes. Interestingly, TLR2/6 liposomes trigger a weaker Th1-immune response which is not sufficient for the induction of a prolonged antitumor activity. Although NOD1 liposome treatment results in the control of early tumor growth, it does not extend mice survival. Surprisingly, the antitumor activity of NOD1 vaccine is not associated with a specific adaptive immune response. This study shows that our modulable platform can be used for the strategical development of vaccines

    Optimization of peptide-based cancer vaccine compositions, by sequential screening, using versatile liposomal platform

    No full text
    Therapeutic cancer vaccines need thoughtful design to efficiently deliver appropriate antigens and adjuvants to the immune system. In the current study, we took advantage of the versatility of a liposomal platform to conceive and customize vaccines containing three elements needed for the induction of efficient antitumor immunity: i) a CD4 epitope peptide able to activate CD4(+) T helper cells, ii) a CD8 tumor-specific epitope peptide recognized by CD8(+) T cytotoxic cells and iii) Pattern Recognition Receptor (PRR) agonists which stand as adjuvants. Each type of component, conjugated to liposomes, was evaluated individually by comparing their vaccine efficacy after immunization of naive mice. These screening steps resulted in the optimization of three liposomal constructs bearing a peptide from HA influenza virus protein as CD4 epitope, a peptide from HPV16 E7 oncoprotein as CD8 epitope and TLR4, TLR2/6 or NOD1 agonists as adjuvant, which displayed antitumor efficiency against a mouse model of disseminated tumors transformed by HPV16. Our results validated the interest of our customizable liposomal platform as delivery system for cancer vaccination. We also demonstrated its interest as tool for vaccine design allowing the strategical selection of components, and the evaluation of epitope-adjuvant association

    Biodistribution of x-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core

    No full text
    In this study, we investigated the role of the chemical nature of the oil droplet core of nano-emulsions used as contrast agents for X-ray imaging on their pharmacokinetics and biodistribution. To this end, we formulated PEGylated nano-emulsions with two iodinated oils (i.e., iodinated monoglyceride and iodinated castor oil) and compared them with another iodinated nano-emulsion based on iodinated vitamin E. By using dynamic light scattering and transmission electron microscopy, the three iodinated nano-emulsions were found to exhibit comparable morphologies, size, and surface composition. Furthermore, they were shown to be endowed with very high iodine concentration, which leads to stronger X-ray attenuation properties as compared to the commercial iodinated nano-emulsion Fenestra VC. The three nano-emulsions were i.v. administered in mice and monitored by microcomputed tomography (micro-CT). They showed high contrast enhancement in blood with similar half-life around 6 h but very different accumulation sites. While iodinated monoglycerides exhibited low accumulation in liver and spleen, high accumulation in spleen was observed for iodinated castor oil and in liver for vitamin E. These data clearly highlighted the important role of the oil composition of the nano-emulsion core to obtain strong X-ray contrast enhancement in specific targets such as liver, spleen, or only blood. These differences in biodistribution were partly attributed to differences in the uptake of the nanodroplets by the macrophages in vitro. Another key feature of these nano-emulsions is their long half-elimination time (several weeks), which offers sufficient retention for micro-CT imaging. This work paves the way for the design of nanoparticulate contrast agents for X-ray imaging of selected organs
    corecore