21 research outputs found

    Cocaine Serves as a Peripheral Interoceptive Conditioned Stimulus for Central Glutamate and Dopamine Release

    Get PDF
    Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI)β€”a cocaine analogue that does not cross the blood brain barrierβ€”on glutamate (excitatory) input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naΓ―ve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naΓ―ve animals

    The Dopamine Augmenter L-DOPA Does Not Affect Positive Mood in Healthy Human Volunteers

    Get PDF
    Dopamine neurotransmission influences approach toward rewards and reward-related cues. The best cited interpretation of this effect proposes that dopamine mediates the pleasure that commonly accompanies reward. This hypothesis has received support in some animal models and a few studies in humans. However, direct assessments of the effect of transiently increasing dopamine neurotransmission have been largely limited to the use of psychostimulant drugs, which elevate brain levels of multiple neurotransmitters in addition to dopamine. In the present study we tested the effect of more selectively elevating dopamine neurotransmission, as produced by administration of the immediate dopamine precursor, L-DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human volunteers. Neither dose altered positive mood. The results suggest that dopamine neurotransmission does not directly influence positive mood in humans

    At What Stage of Neural Processing Does Cocaine Act to Boost Pursuit of Rewards?

    Get PDF
    Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s) of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme) whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction). To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjective cost. This finding challenges the long-standing view that cocaine increases the sensitivity of brain reward circuitry. We discuss the implications of the results and the analytic approach for theories of how dopaminergic neurons and other diffuse modulatory brain systems contribute to reward pursuit, and we explore the implications of the conceptual framework for the study of natural rewards, drug reward, and mood

    Visual statistical decisions

    No full text

    Building consensus in strategic decision-making : system dynamics as a group support system

    Get PDF
    Contains fulltext : 28724.pdf (publisher's version ) (Open Access)System dynamics was originally founded as a method for modeling and simulating the behavior of industrial systems. In recent years it is increasingly employed as a Group Support System for strategic decision-making groups. The model is constructed in direct interaction with a management team, and the procedure is generally referred to as group model-building. The model can be conceptual (qualitative) or a full-blown (quantitative) computer simulation model. In this article, a case is described in which a qualitative system dynamics model was built to support strategic decision making in a Dutch government agency. Since people from different departments held strongly opposite viewpoints on the strategy, the agency had discussed its strategic problem for more than a year, but was obviously not able to reach consensus. The application of group model-building was successful in integrating opposite points of view, as well as in fostering consensus and creating commitment. The purpose of the article is twofold: first, to illustrate the process of group model-building with system dynamics; second, to evaluate why it was successful. Evaluation results reveal the importance of both systemic thinking through model-building and the role of the facilitator in catalyzing the strategic decision-making process
    corecore