103 research outputs found

    Taxonomy and antimicrobial activities of a new Streptomyces sp. TN17 isolated in the soil from an oasis in Tunis

    Get PDF
    An actinomycete strain referred to as TN17 was screened for its antimicrobial activities. The taxonomic status of this strain was established. The organism was found to have morphological and chemotaxonomic characteristics typical of Streptomycetes. Based on the 16S rRNA nucleotide sequences, Streptomyces sp. TN17 was found to have a relationship with Streptomyces lilaceus, Streptomyces gobitricini and Streptomyces lavendofoliae. Combined analysis of the 16 S rRNA gene sequence (FN687757), phylogenetic analysis, fatty acids profile and physiological tests indicated that there are genotypic and phenotypic differences between TN17 and neighboring Streptomyces species’ neighbors. Therefore, TN17 is a novel species: Streptomyces sp. TN17 (=DSM 42020T=CTM50229T). A cultured extract of this strain inhibits the growth of several Gram positive and Gram negative bacteria and fungi

    Purification and structure elucidation of three naturally bioactive molecules from the new terrestrial Streptomyces sp. TN17 strain

    Get PDF
    Thirty litres of fermentation broth was extracted from the newly isolated Streptomyces sp. strain TN17 and various separation and purification steps led to the isolation of three pure bioactive compounds (1–3). Compound 1: cyclo (L-Leu-L-Arg), a diketopiperazine ‘DKP’ derivative; 2: di-(2-ethylhexyl) phthalate, a phthalate derivative; and 3: cyclo 1-[2-(cyclopentanecarbonyl-3-phenyl-propionyl]-pyrrolidine-2-carboxylic acid (1-carbamoyl-propyl)-amide, a cyclic tetrapeptide derivative. The chemical structure of these three active compounds was established on the basis of spectroscopic studies (MS and NMR) and by comparison with data from the literature. According to our biological studies, the pure compounds (1–3) possess antibacterial and antifungal activities

    FilFL: Client Filtering for Optimized Client Participation in Federated Learning

    Full text link
    Federated learning is an emerging machine learning paradigm that enables clients to train collaboratively without exchanging local data. The clients participating in the training process have a crucial impact on the convergence rate, learning efficiency, and model generalization. In this work, we propose FilFL, a new approach to optimizing client participation and training by introducing client filtering. FilFL periodically filters the available clients to identify a subset that maximizes a combinatorial objective function using an efficient greedy filtering algorithm. From this filtered-in subset, clients are then selected for the training process. We provide a thorough analysis of FilFL convergence in a heterogeneous setting and evaluate its performance across diverse vision and language tasks and realistic federated scenarios with time-varying client availability. Our empirical results demonstrate several benefits of our approach, including improved learning efficiency, faster convergence, and up to 10 percentage points higher test accuracy compared to scenarios where client filtering is not utilized

    Isolation of the Bacillus thuringiensis plasmid carrying Bacthuricin F4 coding genes and evidence of its conjugative transfer

    Get PDF
    INTRODUCTION: Conjugation is an excellent natural mode of DNA transfer in vivo between bacteria, particularly when these conjugative elements carry technological traits such as bacteriocin encoding genes. In the present work, the bacteriocinogenic plasmid pIBF4 from Bacillus thuringiensis responsible of Bacthuricin F4 synthesis was isolated and characterized. METHODOLOGY: To isolate pIBF4, the total plasmid DNA from a non-bacteriocin transposant carrying the mini-Tn10 spectinomycin selective marker was extracted and used to transform Escherichia coli strain Top10. PIBF4 was extracted from the obtained transformant and then subjected to restriction enzyme analysis. Plasmid curing experiments were conducted to test the stability of pIBF4 at a stringent temperature of 42°C. Conjugative behavior of pIBF4 was assessed by mating experiments using the non-bacteriocin transposant mutant as a donor strain and several Bacillus thuringiensis strains as recipients. RESULTS: The pIBF4 plasmid was isolated and had a molecular weight of 19.1 kb. Ninety-five percent of cells retained the pIBF4 plasmid after 200 generations, demonstrating its high stability. PIBF4 was successfully transferred to Bacillus thuringiensis HD1CryB strain with a transfer frequency of 1x10(-8) transconjugants per donor cell. The study of the recipient host range revealed that pIBF4 is specifically transferable to Bacillus thuringiensis strains with variable transfer frequencies depending on the recipient host strain. CONCLUSION: Our results show that pIBF4 is a 19.1 kb highly stable plasmid transferable by conjugation to Bacillus thuringiensis strains with deferent transfer frequencies.Tunisian Ministry of Higher Education, Scientific Research, and Technolog

    Bioactive Secondary Metabolites from a New Terrestrial Streptomyces sp. TN262

    Get PDF
    During our search for Streptomyces spp. as new producers of bioactive secondary metabolites, the ethyl acetate extract of the new terrestrial Streptomyces isolate TN262 delivered eight antimicrobially active compounds. They were identified as 1-acetyl-β-carboline (1), tryptophol (2), cineromycin B (3), 2,3-dihydrocineromycin B (4), cyclo-(tyrosylprolyl) (5), 3-(hydroxyacetyl)-indole (6), brevianamide F (7), and cis-cyclo-(l-prolyl-l-leucyl) (8). Three further metabolites were detected in the unpolar fractions using GC–MS and tentatively assigned as benzophenone (9), N-butyl-benzenesulfonamide (10), and hexanedioic acid-bis-(2-ethylhexyl) ester (11). This last compound is known as plasticizer derivatives, but it has never been described from natural sources. In this article, we describe the identification of the new Streptomyces sp. isolate TN262 using its cultural characteristics, the nucleotide sequence of the corresponding 16S rRNA gene and the phylogenetic analysis, followed by optimization, large-scale fermentation, isolation of the bioactive constituents, and determination of their structures. The biological activity of compounds (2), (3), (4), and those of the unpolar fractions was addressed as well

    Evolutionary Pathways to Persistence of Highly Fit and Resistant Hepatitis C Virus Protease Inhibitor Escape Variants

    Get PDF
    Protease inhibitors (PIs) are important components of treatment regimens for patients with chronic hepatitis C virus (HCV) infection. However, emergence and persistence of antiviral resistance could reduce their efficacy. Thus, defining resistance determinants is highly relevant for efforts to control HCV. Here, we investigated patterns of PI resistance–associated substitutions (RASs) for the major HCV genotypes and viral determinants for persistence of key RASs. We identified protease position 156 as a RAS hotspot for genotype 1‐4, but not 5 and 6, escape variants by resistance profiling using PIs grazoprevir and paritaprevir in infectious cell culture systems. However, except for genotype 3, engineered 156‐RASs were not maintained. For genotypes 1 and 2, persistence of 156‐RASs depended on genome‐wide substitution networks, co‐selected under continued PI treatment and identified by next‐generation sequencing with substitution linkage and haplotype reconstruction. Persistence of A156T for genotype 1 relied on compensatory substitutions increasing replication and assembly. For genotype 2, initial selection of A156V facilitated transition to 156L, persisting without compensatory substitutions. The developed genotype 1, 2, and 3 variants with persistent 156‐RASs had exceptionally high fitness and resistance to grazoprevir, paritaprevir, glecaprevir, and voxilaprevir. A156T dominated in genotype 1 glecaprevir and voxilaprevir escape variants, and pre‐existing A156T facilitated genotype 1 escape from clinically relevant combination treatments with grazoprevir/elbasvir and glecaprevir/pibrentasvir. In genotype 1 infected patients with treatment failure and 156‐RASs, we observed genome‐wide selection of substitutions under treatment. Conclusion : Comprehensive PI resistance profiling for HCV genotypes 1‐6 revealed 156‐RASs as key determinants of high‐level resistance across clinically relevant PIs. We obtained in vitro proof of concept for persistence of highly fit genotype 1‐3 156‐variants, which might pose a threat to clinically relevant combination treatments

    Myeloid Cell Crosstalk Regulates the Efficacy of the DNA/ALVAC/gp120 HIV Vaccine Candidate

    Get PDF
    Vaccination with DNA-SIV + ALVAC-SIV + gp120 alum results in inflammasome activation, high levels of IL-1β production, emergency myelopoiesis, and the egress of CXCR4+ CD14+ pre-monocytes from bone marrow. Previously we have shown that this vaccine-induced innate monocyte memory is associated with decreased risk of SIVmac251 acquisition. Because IL-1β also promotes the propagation of monocyte-derived suppressor (M-MDSC)-like cells, here we extended our analysis to this negative regulator subset, characterizing its levels and functions in macaques. Interestingly, we found that DNA prime engages M-MDSC-like cells and their levels are positively associated with the frequency of CD14+ classical monocytes, and negatively with the levels of CD16+ monocytes, correlates of decreased and increased risk of SIV acquisition, respectively. Accordingly, M-MDSC frequency, arginase activity, and NO were all associated with decrease of CD8 T cells responses and worse vaccination outcome. DNA vaccination thus induces innate immunity by engaging three subsets of myeloid cells, M-MDSCs, CD14+ innate monocyte memory, and CD16+ monocytes all playing different role in protection. The full characterization of the immunological space created by myeloid cell crosstalk will likely provide clues to improve the efficacy of HIV vaccine candidates
    corecore