601 research outputs found
Sessile water droplets on insulating surfaces subject to high AC stress effect of contact angle
Surface pollution of outdoor high-voltage insulators is an important cause of flashover. We have undertaken an experimental study of electrical breakdown at the edges of a sessile water droplet on a planar, polymeric, insulating surface when subject to AC stress, parallel to the insulator surface, up to 2MV/m. The static contact angle between droplet and surface was varied by controlling the physical properties of the droplet and by inclining the insulator plane from the horizontal. The partial discharge activity from the water droplet was investigated using a combination of high-speed video camera, operated at up to 3,000 frames per second, and an electrical partial discharge detection system. We have used this to examine the location of partial discharge at the edges of the water droplet
Analysis of the transient process in underwater spark discharges
lf water is stressed with a voltage pulse having a rise time of tens of nanoseconds which creates a sufficiently high electric field, streamers develop and a highly conductive channel forms between the electrodes. The intense Joule heating of the plasma in the channel results in the collapse of its electrical resistance from a few Ohms to a few tens of milliOhms with the behavior of the collapse depending on the parameters of the discharge circuit. The rapid decrease of the resistance occurs during the first quarter of the current oscillation in the circuit. During this time, the pressure inside the channel rises to several GPa, causing the channel to expand in water with a velocity of 100 to 1000 m/s driving a high power ultrasound pulse. In the present paper, a phenomenological model is discussed which describes the dynamics of the resistance of underwater spark discharges during its initial stage and allows the pressure in the acoustic pulse to be obtained. The model is based on the plasma channel energy balance equation used by Braginskii and links the hydrodynamic characteristics of the channel and the parameters of the electric driving circuit. The dynamics of the transient cavity during the dissipation of the electrical energy in the plasma channel is described and the analytical results are compared with experimental measurements of the current in the electrical circuit and the acoustic pulse profiles radiated by the transient cavities
Factors affecting the operation of laser-triggered gas switch (LTGS) with multi-electrode spark gap
Multi-electrode spark switches can be used for switching applications at elevated voltages or for command triggering. Symmetrical field graded electrodes allow the electrical stress across individual gaps to be controlled, thus maximising the hold off voltage and reducing switch pre-fire. The paper considers some aspects of multielectrode switch design and their influence on switching behavior. Non-symmetrical, uni-directional electrode topologies can be employed with advantages over traditional symmetrical design. The choice of working gas and gas pressure can influence switching performance in terms of delay-time and jitter. Transient analysis of switch characteristics has been undertaken in order to understand multi-electrode switching
Temporal regulation of vegetative phase change in plants
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance
A participatory approach to urban transport planning in developing countries
Traditionally transport planning and policymaking has used quantitative surveys to
predict future demand for public transport. However, this paper argues that a more
participatory approach is required in order to better understand household activity
patterns and the impacts and implications of travel on livelihoods. Such an
understanding will enable transport planning and policy to support the needs of lowincome
people and achieve broader poverty alleviation objectives.
This paper draws on case studies undertaken in Harare (Zimbabwe), Accra (Ghana)
and Colombo (Sri-Lanka) as part of a broader study carried out for the DFID
Knowledge and Research Programme. The authors look at the impact of public
transport on certain dimensions of poverty, consider the links between urban transport
and other sectors (health, education and employment) and summarise key methods of
enquiry that might be adopted in effecting a more participatory approach to transport
planning
Finding the proverbial needle: Non-targeted screening of synthetic opioids in equine plasma.
Synthetic opioids are a class of compounds that are of particular concern due to their high potency and potential health impacts. With the relentless emergence of new synthetic opioid derivatives, non-targeted screening strategies are required that do not rely on the use of library spectra or reference materials. In this study, product ion searching, and Kendrick mass defect analysis were investigated for non-targeted screening of synthetic opioids. The estimated screening cut-offs for these techniques ranged between 0.05 and 0.1 ng/mL. These techniques were designed to not be reliant on a particular vendor's software, meaning that they can be applied to existing drug screening protocols, without requiring the development and validation of new analytical procedures. The efficacy of the developed techniques was tested through blind trials, with spiked samples inserted amongst authentic plasma samples, which demonstrated the usefulness of these methods for high-throughput screening. The use of a non-targeted screening workflow that contains complementary techniques can increase the likelihood of detecting compounds of interest within a sample, as well as the confidence in detections that are made
Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation.
The physical effects of high‐intensity pulsed electric fields (PEF) on the inactivation of diarrhoeagenic Bacillus cereus cells suspended in 0·1% peptone water were examined by transmission electron microscopy (TEM). The levels of PEF‐induced microbial cell death were determined by enumeration on tryptone soy yeast extract agar and Bacillus cereus‐selective agar plates. Following exposure to lethal levels of PEF, TEM investigation revealed irreversible cell membrane rupture at a number of locations, with the apparent leakage of intracellular contents. This study provides a clearer understanding of the mechanism of PEF‐induced cellular damage, information that is essential for the further optimization of this emerging food‐processing technology.ye
Light inactivation of food-related pathogenic bacteria using a pulsed power source.
The effects of high intensity light emissions, produced by a novel pulsed power energization technique (PPET), on the survival of bacterial populations of verocytotoxigenic Escherichia coli (serotype 0157:H7) and Listeria monocytogenes (serotype 4b) were investigated. Using this PPET approach, many megawatts (MW) of peak electrical power were dissipated in the light source in an extremely short energization time (about 1 μs). The light source was subjected to electric field levels greater than could be achieved under conventional continuous operation, which led to a greater production of the shorter bacteriocidal wavelengths of light. In the exposure experiments, pre‐determined bacterial populations were spread onto the surface of Trypone Soya Yeast Extract Agar and were then treated to a series of light pulses (spectral range of 200–530 nm) with an exposure time ranging from 1 to 512 μs. While results showed that as few as 64 light pulses of 1 μs duration were required to reduce E. coli 0157:H7 populations by 99·9% and Listeria populations by 99%, the greater the number of light pulses the larger the reduction in cell numbers (P < 0·01). Cell populations of E. coli 0157:H7 and Listeria were reduced by as much as 6 and 7 log10 orders at the upper exposure level of 512 μs, respectively. Survival data revealed that E. coli 0157:H7 was less resistant to the lethal effects of radiation (P < 0·01). These studies have shown that pulsed light emissions can significantly reduce populations of E. coli 0157:H7 and L. monocytogenes on exposed surfaces with exposure times which are 4–6 orders of magnitude lower than those required using continuous u.v. light sources.ye
Jinty Nelson in thirteen articles
This collection gathers thirteen contributions by a number of historians, friends, colleagues and/or students of Jinty’s, who were asked to pick their favourite article by her and say a few words about it for an event held in her memory on 15 January 2025 at King’s College London. We offer this collection in print now for a wider audience not so much because it has any claim to be exhaustive or authoritative, but because taken all together these pieces seemed to add up to a useful retrospective on Jinty’s work, its wider context, and its impact on the field over the decades. We hope that, for those who know her work well already, this may be an opportunity to remember some of her classic (and a few less classic) articles, while at the same time serving as an accessible introduction to her research for anyone who knew her without necessarily knowing about her field, as well as for a new and younger generation of readers
- …
