28 research outputs found
Electron correlation in two-photon double ionization of helium from attosecond to FEL pulses
We investigate the role of electron correlation in the two-photon double
ionization of helium for ultrashort XUV pulses with durations ranging from a
hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio
calculations for pulses with mean frequencies in the so-called "sequential"
regime (photon energy above 54.4 eV). Electron correlation induced by the time
correlation between emission events manifests itself in the angular
distribution of the ejected electrons, which strongly depends on the energy
sharing between them. We show that for ultrashort pulses two-photon double
ionization probabilities scale non-uniformly with pulse duration depending on
the energy sharing between the electrons. Most interestingly we find evidence
for an interference between direct ("nonsequential") and indirect
("sequential") double photo-ionization with intermediate shake-up states, the
strength of which is controlled by the pulse duration. This observation may
provide a route toward measuring the pulse duration of FEL pulses.Comment: 9 pages, 6 figure
Attosecond timescale analysis of the dynamics of two-photon double ionization of helium
We consider the two-photon double ionization (DI) of helium and analyze electron dynamics on the attosecond timescale. We first re-examine the interaction of helium with an ultrashort XUV pulse and study how the electronic correlations affect the electron angular and energy distributions in the direct, sequential and transient regimes of frequency and time duration. We then consider pump-probe processes with the aim of extracting indirect information on the pump pulse. In addition, our calculations show clear evidence for the existence under certain conditions of direct two-color DI processes
Evidence for highly correlated elecron dynamics in two-photon double ionization of helium
International audienc