2 research outputs found

    Semi-artificial datasets as a resource for validation of bioinformatics pipelines for plant virus detection

    Get PDF
    The widespread use of High-Throughput Sequencing (HTS) for detection of plant viruses and sequencing of plant virus genomes has led to the generation of large amounts of data and of bioinformatics challenges to process them. Many bioinformatics pipelines for virus detection are available, making the choice of a suitable one difficult. A robust benchmarking is needed for the unbiased comparison of the pipelines, but there is currently a lack of reference datasets that could be used for this purpose. We present 7 semi-artificial datasets composed of real RNA-seq datasets from virus-infected plants spiked with artificial virus reads. Each dataset addresses challenges that could prevent virus detection. We also present 3 real datasets showing a challenging virus composition as well as 8 completely artificial datasets to test haplotype reconstruction software. With these datasets that address several diagnostic challenges, we hope to encourage virologists, diagnosticians and bioinformaticians to evaluate and benchmark their pipeline(s)

    Kinetics and persistence of the cellular and humoral immune responses to BNT162b2 mRNA vaccine in SARS-CoV-2-naive and -experienced subjects

    Full text link
    Background: Understanding and measuring the individual level of immune protection and its persistence at both humoral and cellular levels after SARS-CoV-2 vaccination is mandatory for the management of the vaccination booster campaign. Our prospective study was designed to assess the immunogenicity of the BNT162b2 mRNA vaccine in triggering the humoral and the cellular immune response in healthcare workers up to 6 months after two doses vaccination. Methods: This prospective study enrolled 208 healthcare workers from the Liège University Hospital (CHU) of Liège in Belgium. All participants received two doses of BioNTech/Pfizer COVID-19 vaccine (BNT162b2). Fifty participants were SARS-CoV-2 experienced (self-reported SARS-CoV-2 infection) and 158 were naïve (no reported SARS-CoV-2 infection) before the vaccination. Blood sampling was performed at the day of the first (T0) and second (T1) vaccine doses administration, then at 2 weeks (T2), 4 weeks (T3) and 6 months (T4) after the 1st vaccine dose administration. A total of 1024 blood samples were collected. All samples were tested for the presence of anti-Spike antibodies using DiaSorin LIAISON SARS-CoV-2 TrimericS IgG assay. Neutralizing antibodies against the SARS-CoV-2 Wuhan-like variant strain were quantified in all samples using a Vero E6 cell-based neutralization-based assay. Cell-mediated immune response was evaluated at T4 on 80 participants by measuring the secretion of IFN- on peripheral blood lymphocytes using the QuantiFERON Human IFN- SARS-CoV-2, Qiagen. All participants were monitored on weekly-basis for the novo SARS-COV-2 infection for 4 weeks after the 1st vaccine dose administration. We analyzed separately the naïve and experienced participants. Findings: We found that anti-spike antibodies and neutralization capacity levels were significantly higher in SARS-CoV-2 experienced healthcare workers (HCWs) compared to naïve HCWs at all time points analyzed. Cellular immune response was similar in the two groups six months following 2nd dose of the vaccine. Reassuringly, most participants had a detectable cellular immune response to SARS-CoV-2 six months after vaccination. Besides the impact of SARS-CoV-2 infection history on immune response to BNT162b2 mRNA vaccine, we observed a significant negative correlation between age and persistence of humoral response. Cellular immune response was, however, not significantly correlated to age, although a trend towards a negative impact of age was observed. Conclusions: Our data strengthen previous findings demonstrating that immunization through vaccination combined with natural infection is better than 2 vaccine doses immunization or natural infection alone. It may have implications for personalizing mRNA vaccination regimens used to prevent severe COVID-19 and reduce the impact of the pandemic on the healthcare system. More specifically, it may help prioritizing vaccination, including for the deployment of booster doses
    corecore