17 research outputs found

    Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes

    Get PDF
    BACKGROUND: Toxoplasmosis is an infectious disease caused by the parasitic protozoan Toxoplasma gondii. It is endemic worldwide and, depending on the geographic location, 15 to 85% of the human population are asymptomatically infected. Routine diagnosis is based on serology. The parasite has emerged as a major opportunistic pathogen for immunocompromised patients, in whom it can cause life-threatening disease. Moreover, when a pregnant woman develops a primary Toxoplasma gondii infection, the parasite may be transmitted to the fetus and cause serious damnage. For these two subpopulations, a rapid and accurate diagnosis is required to initiate treatment. Serological diagnosis of active infection is unreliable because reactivation is not always accompanied by changes in antibody levels, and the presence of IgM does not necessarily indicate recent infection. Application of quantitative PCR has evolved as a sensitive, specific, and rapid method for the detection of Toxoplasma gondii DNA in amniotic fluid, blood, tissue samples, and cerebrospinal fluid. METHODS: Two separate, real-time fluorescence PCR assays were designed and evaluated with clinical samples. The first, targeting the 35-fold repeated B1 gene, and a second, targeting a newly described multicopy genomic fragment of Toxoplasma gondii. Amplicons of different intragenic copies were analyzed for sequence heterogeneity. RESULTS: Comparative LightCycler experiments were conducted with a dilution series of Toxoplasma gondii genomic DNA, 5 reference strains, and 51 Toxoplasma gondii-positive amniotic fluid samples revealing a 10 to 100-fold higher sensitivity for the PCR assay targeting the newly described 529-bp repeat element of Toxoplasma gondii. CONCLUSION: We have developed a quantitative LightCycler PCR protocol which offer rapid cycling with real-time, sequence-specific detection of amplicons. Results of quantitative PCR demonstrate that the 529-bp repeat element is repeated more than 300-fold in the genome of Toxoplasma gondii. Since individual intragenic copies of the target are conserved on sequence level, the high copy number leads to an ultimate level of analytical sensitivity in routine practice. This newly described 529-bp repeat element should be preferred to less repeated or more divergent target sequences in order to improve the sensitivity of PCR tests for the diagnosis of toxoplasmosis

    Clinical Value of Specific Immunoglobulin E Detection by Enzyme-Linked Immunosorbent Assay in Cases of Acquired and Congenital Toxoplasmosis

    No full text
    The clinical value of immunoenzymatic (enzyme-linked immunosorbent assay) detection of anti-Toxoplasma immunoglobulin E (IgE) was assessed by studying 2,036 sera from 792 subjects, comprising seronegative controls and subjects with acute, active, reactivated, or congenital toxoplasmosis. Included were nonimmunized adults; pregnant women with recently acquired infection (acute toxoplasmosis); immunocompetent subjects with recently acquired severe infection (active toxoplasmosis) expressed as fever, adenopathies, splenomegaly, pneumonia, meningitis, or disseminated infection; subjects—some of them immunocompromised—whose previously moderate IgG antibody levels rose, suggesting a reactivation of quiescent toxoplasmosis; and infants born to seroconverted mothers and evaluated for diagnosis of congenital infection and therapeutic management. Specific IgE antibodies were never detected in seronegative subjects. They were present in 85.7% of asymptomatic seroconverters and in 100% of seroconverters with overt toxoplasmosis, following two different kinetics: in the former, the specific IgE titer generally presented a brief peak 2 to 3 months postinfection and then fell rapidly, whereas specific IgE persisted at a very high titer for several months in the latter. IgE emerged concomitantly with the increase in IgG during toxoplasmic reactivation. For neonatal diagnosis of congenital toxoplasmosis, IgE was less informative than IgM and IgA (sensitivities, 59.5, 64.3, and 76.2%, respectively) and had a specificity of 91.9%. Nevertheless, simultaneous measurement of the three isotypes at birth improved the diagnostic yield to 81% relative to the combination of IgA and IgM. Emergence of specific IgE during postnatal treatment for congenital toxoplasmosis is a sign of poor adherence or inadequate dosing
    corecore