4 research outputs found

    Constraint propagation equations of the 3+1 decomposition of f(R) gravity

    Full text link
    Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke (BD) scalar-tensor gravity without a kinetic term. Using this equivalence and a 3+1 decomposition of the theory it has been shown that metric f(R) gravity admits a well-posed initial value problem. However, it has not been proven that the 3+1 evolution equations of metric f(R) gravity preserve the (hamiltonian and momentum) constraints. In this paper we show that this is indeed the case. In addition, we show that the mathematical form of the constraint propagation equations in BD-equilavent f(R) gravity and in f(R) gravity in both the Jordan and Einstein frames, is exactly the same as in the standard ADM 3+1 decomposition of GR. Finally, we point out that current numerical relativity codes can incorporate the 3+1 evolution equations of metric f(R) gravity by modifying the stress-energy tensor and adding an additional scalar field evolution equation. We hope that this work will serve as a starting point for relativists to develop fully dynamical codes for valid f(R) models.Comment: 25 pages, matches published version in CQG, references update

    Simulating magnetized neutron stars with discontinuous Galerkin methods

    Get PDF
    Discontinuous Galerkin methods are popular because they can achieve high order where the solution is smooth, because they can capture shocks while needing only nearest-neighbor communication, and because they are relatively easy to formulate on complex meshes. We perform a detailed comparison of various limiting strategies presented in the literature applied to the equations of general relativistic magnetohydrodynamics. We compare the standard minmod/ΛΠN\Lambda\Pi^N limiter, the hierarchical limiter of Krivodonova, the simple WENO limiter, the HWENO limiter, and a discontinuous Galerkin-finite-difference hybrid method. The ultimate goal is to understand what limiting strategies are able to robustly simulate magnetized TOV stars without any fine-tuning of parameters. Among the limiters explored here, the only limiting strategy we can endorse is a discontinuous Galerkin-finite-difference hybrid method

    Coalescence of Black Hole-Neutron Star Binaries

    Full text link
    corecore