127 research outputs found

    Two-photon photochemical long-period grating fabrication in hydrogenated photonic crystal fiber

    No full text
    We report on the photochemical fabrication of a long-period grating in photonic crystal fiber. The characteristic fluence value for inscription is an order of magnitude less than that for standard telecom fiber

    Passively Stabilized Doubly-Resonant Brillouin Fiber Lasers

    Get PDF
    We consider ultra narrow-line lasers based on doubly-resonant fiber cavities, describe experimental techniques, and present two methods for passive stabilization of single-frequency fiber Brillouin lasers. In the first approach, Brillouin fiber laser is passively stabilized at the pump resonance frequency by employing the self-injection locking phenomenon. We have demonstrated that this locking phenomenon delivers a significant narrowing of the pump laser linewidth and generates the Stokes wave with linewidth of about 0.5 kHz. In the second methodology, the fiber laser is stabilized with an adaptive dynamical grating self-organized in un-pumped Er-doped optical fiber. The laser radiates a single-frequency Stokes wave with a linewidth narrower than 100 Hz. The ring resonators of both presented lasers are simultaneously resonant for the pump and the Stokes radiations. For adjusting the double resonance at any preselected pump laser wavelength, we offer a procedure that provides a good accuracy of the final resonance peak location with ordinary measurement and cutting errors. The stable regime for both Brillouin lasers is observed during some intervals, which are interrupted by short-time jumping-intervals. The lasers’ stability can be improved by utilizing polarization-maintaining (PM) fiber configuration and a cavity protection system

    Fiber Laser for Phase-Sensitive Optical Time-Domain Reflectometry

    Get PDF
    We have designed a new fiber laser configuration with an injection-locked DFB laser applicable for phase-sensitive optical time-domain reflectometry. A low-loss fiber optical ring resonator (FORR) is used as a high finesse filter for the self-injection locking of the DFB (IL-DFB) laser. By varying the FORR fidelity, we have compared the DFB laser locking with FORR operating in the under-coupled, critically coupled, and over-coupled regimes. The critical coupling provides better frequency locking and superior narrowing of the laser linewidth. We have demonstrated that the locked DFB laser generates a single-frequency radiation with a linewidth less than 2.5 kHz if the FORR operates in the critically coupled regime. We have employed new IL-DFB laser configuration operating in the critical coupling regime for detection and localization of the perturbations in phase-sensitive OTDR system. The locked DFB laser with a narrow linewidth provides reliable long-distance monitoring of the perturbations measured through the moving differential processing algorithm. The IL-DFB laser delivers accurate localization of the vibrations with a frequency as low as ~50 Hz at a distance of 9270 m providing the same signal-to-noise ratio that is achievable with an expensive ultra-narrow linewidth OEwaves laser (OE4020–155000-PA-00)

    ENSO surface shortwave radiation forcing over the tropical Pacific

    Get PDF
    International audienceWe have studied the spatial and temporal variation of the downward shortwave radiation (DSR) at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S?40° N, 90° E?75° W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text). A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A) time-series, in the region 7° S?5° N 160° E-160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from ?45 Wm?2 during El Niño episodes to +40 Wm?2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S?5° N, 120?140° E), where the mean DSR anomaly values range from +20 Wm?2 to ?20 Wm?2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the north subtropical Pacific region 7?15° N 150?170° E, precedes the Niño-3.4 index time-series by about 7 months. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail

    Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984-2000

    No full text
    International audienceA decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR) at the top of atmosphere (TOA) at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984-2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP) D2 database. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S-30° N), indicating a decadal increase in solar planetary heating equal to 1.9±0.3Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. This increase in solar planetary heating, however, is accompanied by a similar increase in planetary cooling, due to increased outgoing longwave radiation, so that there is no change in net radiation. The model computed OSR trend is in good agreement with the corresponding linear decadal decrease of 2.5±0.4Wm-2/decade in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data (edition 2). An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of model computed OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S-30° N), gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR) analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative terms. A detailed analysis of the inter-annual and long-term variability of the various parameters determining the OSR at TOA, has shown that the most important contribution to the observed OSR trend comes from a decrease in low-level cloud cover over the period 1984-2000, followed by decreases in middle and high-level cloud cover. Note, however, that there still remain some uncertainties associated with the existence and magnitude of trends in ISCCP-D2 cloud amounts. Opposite but small trends are introduced by increases in cloud scattering optical depth of low and middle clouds

    Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    No full text
    International audienceThe mean monthly shortwave (SW) radiation budget at the top of atmosphere (TOA) was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2) supplemented by data from the National Centers for Environmental Prediction ? National Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE) S4 scanner satellite data (1985?1989). The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR) by 0.93 Wm-2 (or by 0.92%), within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values), respectively, over the 14-year period (from January 1984 to December 1997), indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S?20° N), with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also detected

    Global distribution of Earth's surface shortwave radiation budget

    No full text
    International audienceThe monthly mean shortwave (SW) radiation budget at the Earth's surface (SRB) was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2). The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN) covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA), covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR) is equal to 171.6 Wm-2, whereas the net downward (or absorbed) surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade), indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to other parameters such as total precipitable water. The surface solar heating occurs mainly in the period starting from the early 1990s, in contrast to decreasing trend in DSR through the late 1980s. The computed global mean DSR and net DSR flux anomalies were found to range within ±8 and ±6 Wm-2, respectively, with signals from El Niño and La Niña events, and the Pinatubo eruption, whereas significant positive anomalies have occurred in the period 1992-2000

    Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale

    Get PDF
    International audienceWe used a spectral radiative transfer model to compute the direct radiative effect (DRE) of natural plus anthropogenic aerosols in the solar near-infrared (IR), between 0.85?10 ?m, namely, their effect on the outgoing near-IR radiation at the top of atmosphere (TOA, ?FTOA), on the atmospheric absorption of near-IR radiation (?Fatmab) and on the surface downward and absorbed near-IR radiation (?Fsurf, and ?Fsurfnet, respectively). The computations were performed on a global scale (over land and ocean) under all-sky conditions, using detailed spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS) supplemented by realistic data for the rest of surface and atmospheric parameters. The computed aerosol DRE, averaged over the 12-year period 1984?1995 for January and July, shows that on a global mean basis aerosols produce a planetary cooling by increasing the scattered near-IR radiation back to space by 0.48 W m?2, they warm the atmosphere by 0.37 W m?2 and cool the surface by decreasing the downward and absorbed near-IR radiation at surface by 1.03 and 0.85 W m?2, respectively. The magnitude of the near-IR aerosol DRE is smaller than that of the combined ultraviolet (UV) and visible DRE, but it is still energetically important, since it contributes to the total shortwave (SW) DRE by 22?31%. The aerosol-produced near-IR surface cooling combined with the atmospheric warming, may affect the thermal dynamics of the Earth-atmosphere system, by increasing the atmospheric stability, decreasing thus cloud formation, and precipitation, especially over desertification threatened regions such as the Mediterranean basin. This, together with the fact that the sign of near-IR aerosol DRE is sometimes opposite to that of UV-visible DRE, demonstrates the importance of performing detailed spectral computations to provide estimates of the climatic role of aerosols for the Earth-atmosphere system. This was demonstrated by sensitivity tests revealing very large differences (up to 300%) between aerosol DREs computed using detailed spectral and spectrally-averaged aerosol optical properties. Our model results indicate thus that the aerosol direct radiative effect on the near-IR radiation is very sensitive to the treatment of the spectral dependence of aerosol optical properties and solar radiation

    ENSO surface longwave radiation forcing over the tropical Pacific

    No full text
    International audienceWe have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net) over a 21-year period in the tropical and subtropical Pacific Ocean (40 S?40 N, 90 E?75 W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text), for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR) anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15?0 S, 105?130 E). There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3?4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm?2 during El Niño episodes to ?20 Wm?2 during La Niña events, while over the western Pacific (15?0 S, 105?130 E) these values range from ?15 Wm?2 to +10 Wm?2, respectively. The long- term average (1984?2004) distribution of the net surface longwave radiation to the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm?2 south of the equator in the central Pacific (7?0 S, 160?120 W) for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the thermal radiative cooling over Indonesia is enhanced by 10 Wm?2 during the early (August?September?October) El Niño phase
    • …
    corecore