26,384 research outputs found

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    An exploratory investigation of the effect of a plastic coating on the profile drag of a practical-metal-construction sailplane airfoil

    Get PDF
    The Langley low-turbulence pressure tunnel to determine the effect of a plastic coating on the profile drag of a practical-metal-construction sailplane airfoil was investigated. The model was tested with three surface configurations: (1) filled, painted, and sanded smooth; (2) rough bare metal; and (3) plastic-coated. The results are compared with data for the design airfoil (Wortmann FX 67-K-170/17) from another low-turbulence wind tunnel. The investigation was conducted at Reynolds numbers based on airfoil chord of 1.1 x 10 to the 6th power, 2.2 x 10 to the 6th power, and 3.3 x 10 to the 6th power at a Mach number of 0.10

    Flight-test measurement of the noise reduction of a jet transport delayed flap approach procedure

    Get PDF
    A delayed flap approach procedure was flight tested using the NASA CV-990 airplane to measure and analyze the noise produced beneath the flight path. Three other types of landing approaches were also flight tested to provide a comparison of the noise reduction benefits to the delayed flap approach. The conventional type of approach was used as a baseline to compare the effectiveness of the other approaches. The decelerating approach is a variation of the delayed flap approach. A detailed comparison of the ground perceived noise generated during the approaches is presented. For this comparison, the measured noise data were normalized to compensate for variations in aircraft weight and winds that occurred during the flight tests. The data show that the reduced flap approach offers some noise reduction, while the delayed flap and decelerating approaches offer significant noise reductions over the conventional approach

    Auxin-induced growth inhibition a natural consequence of two-point attachment

    Get PDF
    It is characteristic of a great number of biologically active substances that the responses which they elicit are twofold, low concentrations of the material promoting a particular activity, and higher concentrations inhibiting it. This is the case with the auxin-induced growth responses of plants. An active auxin such as indole acetic acid (IAA) brings about and is essential to growth in length of stems, hypocotyls and other plant organs including the Avena coleoptile

    Helical automatic approaches of helicopters with microwave landing systems

    Get PDF
    A program is under way to develop a data base for establishing navigation and guidance concepts for all-weather operation of rotorcraft. One of the objectives is to examine the feasibility of conducting simultaneous rotorcraft and conventional fixed-wing, noninterfering, landing operations in instrument meteorological conditions at airports equipped with microwave landing systems (MLSs) for fixed-wing traffic. An initial test program to investigate the feasibility of conducting automatic helical approaches was completed, using the MLS at Crows Landing near Ames. These tests were flown on board a UH-1H helicopter equipped with a digital automatic landing system. A total of 48 automatic approaches and landings were flown along a two-turn helical descent, tangent to the centerline of the MLS-equipped runway to determine helical light performance and to provide a data base for comparison with future flights for which the helical approach path will be located near the edge of the MLS coverage. In addition, 13 straight-in approaches were conducted. The performance with varying levels of state-estimation system sophistication was evaluated as part of the flight tests. The results indicate that helical approaches to MLS-equipped runways are feasible for rotorcraft and that the best position accuracy was obtained using the Kalman-filter state-estimation with inertial navigation systems sensors

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    M-grid: Using Ubiquitous Web Technologies to create a Computational Grid

    No full text
    There are many potential users and uses for grid computing. However, the concept of sharing computing resources excites security concerns and, whilst being powerful and flexible, at least for novices, existing systems are complex to install and use. Together these represent a significant barrier to potential users who are interested to see what grid computing can do. This paper describes m-grid, a system for building a computational grid which can accept tasks from any user with access to a web browser and distribute them to almost any machine with access to the internet and manages to do this without the installation of additional software or interfering with existing security arrangements
    • …
    corecore