243 research outputs found

    Exposure to virgin and marine incubated microparticles of biodegradable and conventional polymers modulates the hepatopancreas transcriptome of Mytilus galloprovincialis

    Get PDF
    Biodegradable polymers have been proposed as an alternative to conventional plastics to mitigate the impact of marine litter, but the research investigating their toxicity is still in its infancy. This study evaluates the potential ecotoxicological effects of both virgin and marine-incubated microparticles (MPs), at environmentally relevant concentration (0.1 mg/l), made of different biodegradable polymers (Polycaprolactone, Mater-Bi, cellulose) and conventional polymers (Polyethylene) on Mytilus galloprovincialis by using transcriptomics. This approach is increasingly being used to assess the effects of pollutants on organisms, obtaining data on numerous biological pathways simultaneously. Whole hepatopancreas de novo transcriptome sequencing was performed, individuating 972 genes differentially expressed across experimental groups compared to the control. Through the comparative transcriptomic profiling emerges that the preponderant effect is attributable to the marine incubation of MPs, especially for incubated polycaprolactone (731 DEGs). Mater-Bi and cellulose alter the smallest number of genes and biological processes in the mussel hepatopancreas. All microparticles, regardless of their polymeric composition, dysregulated innate immunity, and fatty acid metabolism biological processes. These findings highlight the necessity of considering the interactions of MPs with the environmental factors in the marine ecosystem when performing ecotoxicological evaluations. The results obtained contribute to fill current knowledge gaps regarding the potential environmental impacts of biodegradable polymers

    First data on plastic ingestion by blue sharks (Prionace glauca) from the Ligurian Sea (North-Western Mediterranean Sea)

    Get PDF
    Few studies have focused so far on plastic ingestion by sharks in the Mediterranean Sea. The aim of this paper was to determine, for the first time, the plastic litter ingested by blue sharks (Prionace glauca), categorized as \u201cCritically Endangered\u201d in the Mediterranean Sea by IUCN, caught in the Pelagos Sanctuary SPAMI (North-Western Mediterranean Sea). The analysis of the stomach contents was performed following the MSFD Descriptor 10 standard protocol implemented with FT-IR spectroscopy technique. The results showed that 25.26% of sharks ingested plastic debris of wide scale of sizes from microplastics (<5 mm) to macroplastics (>25 mm). The polyethylene sheetlike user plastics, widely used as packaging material, are the most ingested debris. This research raises a warning alarm on the impact of plastic debris on a threatened species, with a key role in the food web, and adds important information for futures mitigation actions

    Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies

    Get PDF
    BACKGROUND: Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR) has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. RESULTS: Ten commonly used housekeeping genes (HKGs) were partially sequenced in the striped dolphin (Stenella coeruleoalba) and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper) which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH) and tyrosine 3-monooxygenase (YWHAZ) always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4) and S18 (RPS18) also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC), phosphoglycerate kinase 1 (PGK1), hypoxanthine ribosyltransferase (HPRT1) and β-2-microglobin (B2M) show variable expression among the studied samples and appear as less suitable reference genes for data normalization. CONCLUSION: In this work, we have provided essential background information for the selection of control genes in qRT-PCR studies of cetacean skin biopsies, as a molecular technique to investigate ecotoxicological hazard in marine mammals. Of 10 HKGs tested, those encoding for YWHAZ and GAPDH appear as the most reliable control genes for the normalization of qRT-PCR data in the analysis of striped dolphin skin biopsies. Potentially useful reference genes are also those encoding for ribosomal proteins L4 and S18

    A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies

    Get PDF
    Impacts of debris on marine fauna occur throughout the marine ecosystems, with adverse impacts documented on over 1,400 species; impacts can be divided into those arising from entanglement, and those from ingestion. Ingestion of, and entanglement in, debris has been documented in over 60% of all cetacean species. Seabirds are also impacted by debris predominately through entanglement and ingestion, with the number of species negatively impacted increasing from 138 to 174 over the past two decades. In the marine environment, cetaceans and seabirds are widely regarded as reliable sentinels due to their position near the top of the marine food web, conspicuous nature, and reliance on marine resources; for this reason, this paper is focused on seabirds and cetaceans as sentinels of ocean change. In particular, two case studies are considered in relation to different levels of environmental anthropogenic impact: the cetaceans of the Mediterranean Sea and seabirds of eastern Australia. Here we describe two recent studies used to diagnose the toxicological stress related to debris-associated pressures in cetaceans and seabirds. These studies highlight the diversity and scale of impacts being felt by marine species and the role these organisms can play in our society as charismatic sentinels of ocean health. Seabirds and marine mammals are exposed, in these key areas, to a variety of adversities that potentially decrease their survival or reproductive success. These include weather, food shortages, predators, competitors, parasites, disease, and human-induced effects and plastic pollution. Each factor affects seabirds and marine mammals in a different way, but more importantly, factors can also interact and create impacts far greater than any one factor alone. The Australian and Mediterranean case studies presented here emphasize the need to consider multiple sources of mortality when developing management plans for the conservation of vulnerable species

    Release of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Rubber Crumb in Synthetic Turf Fields: Preliminary Hazard Assessment for Athletes

    Get PDF
    Synthetic turf, made with an infill of rubber crumb from used tyres or virgin rubber, is now common in many sporting facilities. It is known that it contains compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals. We evaluated in nine samples of rubber crumb the total content of some heavy metals (Zn, Cd, Pb, Cu, Cr, Ni, Fe) normally found in tyres by microwave mineralization and the levels of the 14 US EPA priority PAHs by Soxhlet extraction and HPLC analysis. The results showed high levels of PAHs and zinc in all rubber crumb samples compared to rubber granulate limits set by Italian National Amateur League (LND). Following the precautionary principle, a risk assessment at 25°C was done, using the Average Daily Dose (ADD) assumed by athletes, expressed in terms of mass of contaminant per unit of body weight per day (mg/kg day), and the Lifetime Average Daily Dose (LADD) and then evaluating the Hazard Index (HI) and the Cumulative Excess Cancer Risk (∑ECR). In the different rubber granulates samples the HI ranges from a minimum of 8.94×10-7 to a maximum of 1.16×10-6, while the ∑ECR ranges from a minimum of 4.91×10-9 to a maximum of 1.10×10-8. Finally, the aim of this study was to estimate the “hazard” for athletes inhaling PAHs released at the high temperatures this synthetic turf may reach. Then a sequence of proofs was carried out at 60°C, a temperature that this rubber crumb can easily reach in sporting installations, to see whether PAH release occurs. The toxicity equivalent (TEQ) of eva

    Ecotoxicological Investigation in Three Model Species Exposed to Elutriates of Marine Sediments Inoculated With Bioplastics

    Get PDF
    The aim of this study was to evaluate a set of ecotoxicity biotests on three marine model species exposed to elutriates of marine sediments inoculated with the biodegradable plastic Mater-Bi or with cellulose. The sediments were incubated at 28°C and tested after 6 months, when clear signs of degradation were visible in the exposed samples, and after 12 months, when the samples had completely disappeared. The model organisms selected for the study were the unicellular algae Dunaliella tertiolecta, the sea urchin (Paracentrotus lividus) and sea bass (Dicentrarchus labrax) juveniles. The unicellular algae and sea urchins were used to determine the toxicological endpoint of growth inhibition and embryotoxicity, respectively, and the sea bass juveniles were tested to evaluate sublethal effect endpoints using lipid peroxidation and genotoxicity biomarkers. Elutriates of sediment inoculated with Mater-Bi for 6 and 12 months showed an absence of toxic effects in all of the model organisms exposed in this study. The Mater-Bi degradation process did not generate or transfer into the elutriates toxic substances that could cause alterations in the growth of D. tertiolecta, in the P. lividus embryo-toxicity assay or in the sensitive biomarker responses of the fish D. labrax. The tested species are considered to be representatives of different levels of the marine trophic chain. The results obtained in this study suggest that the ecotoxicological approach applied may be suitable for investigating the environmental impact of the degradation of bioplastics in marine sediments

    First record of plastic debris in the stomach of Mediterranean lanternfishes

    Get PDF
    This study highlights for the first time the presence of plastic debris in the stomachs of Mediterranean lanternfishes (Myctophidae): Electrona risso, Diaphus metopoclampus, Hygophum benoiti and Myctophum punctatum. Samples were collected in the central Mediterranean Sea between 2010 and 2014. Plastics ingested belonged to small microplastics (0.2 - 2 mm), large microplastics (2 - 5 mm) and mesoplastics (5 - 25 mm), having mainly clear colors. Their frequency of occurrence in stomachs was equal to 2.7%, but it increases to 5.8% if only migratory species are considered. The higher number of plastics was found in E. risso and H. benoiti (5 in both species). The plastic ingestion may represent a risk for vertical migrant lanternfishes due to the increase in buoyancy. Ecotoxicological aspects linked to the potential effects of contaminants on lanternfish biology and to the transfer of pollutants throughout the marine trophic web up to top predators should be deepened

    Prvi zapis o plastičnim krhotinama u želucu mediteranskih riba žaboglavki (Myctophidae)

    Get PDF
    This study highlights for the first time the presence of plastic debris in the stomachs of Mediterranean lanternfishes (Myctophidae): Electrona risso, Diaphus metopoclampus, Hygophum benoiti and Myctophum punctatum. Samples were collected in the central Mediterranean Sea between 2010 and 2014. Plastics ingested belonged to small microplastics (0.2 - 2 mm), large microplastics (2 - 5 mm) and mesoplastics (5 - 25 mm), having mainly clear colors. Their frequency of occurrence in stomachs was equal to 2.7%, but it increases to 5.8% if only migratory species are considered. The higher number of plastics was found in E. risso and H. benoiti (5 in both species). The plastic ingestion may represent a risk for vertical migrant lanternfishes due to the increase in buoyancy. Ecotoxicological aspects linked to the potential effects of contaminants on lanternfish biology and to the transfer of pollutants throughout the marine trophic web up to top predators should be deepened.Ova studija ističe po prvi put prisutnost plastičnih otpadaka u želucima mediteranskih žaboglavki. (Myctophidae): Electrona risso, Diaphus metopoclampus, Hygophum benoiti i Myctophum punctatum. Uzorci su prikupljeni u središnjem Mediteranu u periodu između 2010. i 2014. godine. Progu tane čestice plastike pripadaju maloj mikroplastici (0,2-2 mm), velikoj mikroplastici (2-5 mm) i mezoplastici (5-25 mm), te su uglavnom jasnih boja. Njihova učestalost pojavljivanja u probavilima iznosila je 2.7%, dok je kod migratornih vrsta iznosila 5.8%. Veći broj čestica plastike pronađen je kod vrsta E. risso i H. benoiti (5 po vrsti). Gutanje plastike može predstavljati rizik za vertikalne migratore iz porodice žaboglavki zbog povećanja uzgona. Potrebno je produbiti istraživanja ekotoksikoloških aspekata povezanih s mogućim učincima zagađivala na biologiju žaboglavki, kao i onih povezanih s prijenosom zagađivala kroz trofičku mrežu u moru sve do glavnih grabežljivaca
    corecore