7 research outputs found

    Simulations of threshold displacement in beryllium

    No full text
    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions. A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data

    Xe diffusion and bubble nucleation around edge dislocations in UO2

    Get PDF
    AbstractRecently it has been suggested that dislocations, generated by radiation damage, may increase the rate of fission gas diffusion from the fuel grains, an affect which is at present not incorporated into fuel performance codes. Therefore, we perform molecular dynamics simulations employing empirical potentials to investigate the diffusion of Xe atoms around edge dislocations in UO2 to establish the importance of this pathway for fission gas release. The results suggest that for isolated atoms near the dislocation the activation energy for Xe diffusion is dramatically reduced relative to the bulk. However, Xe atoms diffusing along the dislocation cluster together to form small bubbles, these bubbles incorporate all of the isolated mobile Xe atoms thereby inhibiting fast diffusion of Xe along the dislocation core

    Pipe and grain boundary diffusion of He in UO₂

    Get PDF
    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion in UO2. Calculations were carried out for the {100}, {110} and {111} h110i edge dislocations, the screw h110i dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300 - 3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. An Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundar

    Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th,U)O2, (Th,Pu)O2 and (Pu,U)O2

    Get PDF
    Molecular dynamics (MD) was used to establish a mechanistic basis for the experimentally observed reduction in liquidus and solidus temperatures below the melting point of the end-members for the mixed oxides (Th, U)O2, (Th, Pu)O2 and (Pu, U)O2. This dip is found at additions of the oxide with higher melting point to the oxide with the lower melting point. There are many causes suggested for the dip; here the distribution of the cation Frenkel energy for the mixed oxides caused by the local environment is proposed as a contributor. Furthermore, a variant of the moving interface method which yields information on the position of the solidus and liquidus boundaries, is used to predict the phase diagrams of these systems

    Degradation of partially immersed glass: A new perspective

    No full text
    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90ºC. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests
    corecore