6 research outputs found

    The First Step in Solar Hydrogen Production: Development of a Solar Thermal Reactor for the Reduction of Metal Oxide Particles

    Get PDF
    A solar thermal reactor has been designed to experimentally investigate promising paths for reducing metal oxide particles to reduced oxidation states (e.g. Fe2O3 to Fe3O4) utilizing concentrated solar energy. This reactor is windowless and is able to handle internal cavity temperatures in excess of 1700 K. It also has a quasi-continuous feed system that allows the particle residence times to be varied for particles between 0.044 mm and 1 mm in diameter. Furthermore, this reactor utilizes an instrumentation system for the measurement of temperature, particle residence time, particle mass flow rate, and solar flux. In an industrial setting, a large-scale metal oxide reactor would serve as the first step in a metal oxide solar thermal electro-chemical cycle. After the particles are reduced at elevated temperatures using concentrated solar energy, they are used in an electrolysis process to facilitate the production of hydrogen from water. In this process, the reduced metal oxide particles are reoxidized at the anode and hydrogen is liberated at the cathode. The presence of the metal oxide enables hydrogen to be produced with an ideal cell potential of 0.21 V, a potential substantially below the ideal value of 1.2 V for traditional water electrolysis

    The First Step in Solar Hydrogen Production: Development of a Solar Thermal Reactor for the Reduction of Metal Oxide Particles

    Get PDF
    A solar thermal reactor has been designed to experimentally investigate promising paths for reducing metal oxide particles to reduced oxidation states (e.g. Fe2O3 to Fe3O4) utilizing concentrated solar energy. This reactor is windowless and is able to handle internal cavity temperatures in excess of 1700 K. It also has a quasi-continuous feed system that allows the particle residence times to be varied for particles between 0.044 mm and 1 mm in diameter. Furthermore, this reactor utilizes an instrumentation system for the measurement of temperature, particle residence time, particle mass flow rate, and solar flux. In an industrial setting, a large-scale metal oxide reactor would serve as the first step in a metal oxide solar thermal electro-chemical cycle. After the particles are reduced at elevated temperatures using concentrated solar energy, they are used in an electrolysis process to facilitate the production of hydrogen from water. In this process, the reduced metal oxide particles are reoxidized at the anode and hydrogen is liberated at the cathode. The presence of the metal oxide enables hydrogen to be produced with an ideal cell potential of 0.21 V, a potential substantially below the ideal value of 1.2 V for traditional water electrolysis

    Designing a Calorimeter to Calibrate an Optical Radiative Flux Measurement System to Find the Power Entering a Solar Reactor

    Get PDF
    A solar furnace has been constructed at Valparaiso University to test the performance of various solar chemical reactors. A primary performance index of a solar chemical reactor is the efficiency, or the fraction of the energy that enters the reactor that is utilized in the chemical reaction. To calculate this efficiency, we must first know how much solar power is entering the reactor. An optical radiative flux measurement system has been developed that gives the solar flux distribution over the aperture of the reactor, but must be calibrated to provide the actual power level. Therefore, a calorimeter was designed and built to perform this calibration. The calorimeter is designed so that the solar power entering the aperture is transferred to water flowing through the tubes that make up the cavity. Then, by measuring the flow rate of the water and the temperature of the water at the inlet and outlet, the energy entering the calorimeter can be calculated using the first law of thermodynamics. The uncertainty in the calculated power level has also been established through a thermal loss and measurement uncertainty analysis

    Development of a Solar Rotary-Kiln Reactor for the Reduction of Metal Oxide Particles

    Get PDF
    A solar rotary-kiln reactor has been fabricated for the reduction of metal oxide particles at ~1650 K as part of a solar thermal decoupled water electrolysis process for the production of hydrogen. Particle motion is controlled through the reactor’s angular speed of rotation. At rotational speeds greater than 65 rpm, the internal walls of the reactor are fully covered with particles. Simultaneously, mixing elements generate a particle cloud in the reactor in order to increase the absorption of incident solar radiation. A model of the reactor that solves the energy conservation equation and includes the kinetics of the metal oxide reduction suggests that peak thermal efficiencies of 47 percent are possible for the reduction of hematite to magnetite. In parallel, the solid state kinetics for the reduction of cobalt oxide (a promising alternative to iron oxide) in a low oxygen partial pressure atmosphere has been determined. Reduction follows the shrinking core model and is initially limited by the rate of oxygen diffusion in the gas phase and later limited by the chemical kinetics at the shrinking reactive interface. Regression of the model to isothermal and non-isothermal thermogravimetric analyzer data yielded the temperature-dependent reaction rate parameters

    Enhancing the undergraduate educational experience : development of a micro-gas turbine laboratory

    No full text
    A Capstone C30 MicroTurbine has been installed, instrumented, and utilized in a junior-level laboratory course at Valparaiso University. The C30 MicroTurbine experiment enables Valparaiso University to educate students interested in power generation and turbine technology. The first goal of this experiment is for students to explore a gas turbine generator and witness the discrepancies between idealized models and real thermodynamic systems. Secondly, students measure and analyze data to determine where losses occur in a real gas turbine. The third educational goal is for students to recognize the true costs associated with natural gas use, i.e. the hidden costs of transporting the gas to the consumer. Overall, the gas turbine experiment has garnered positive feedback from students. The twenty-six students who performed the lab in Spring 2014 rated the quality and usefulness of the gas turbine experiment as 4.28 and 4.19, respectively, on a 1-5 Likert scale, where 1 is low and 5 is high
    corecore