

Introduction

With the current uncertainty in the future of fossil fuel energy, solar energy has risen as a competitor for large scale energy production. Many have argued that one of the most promising futures for solar energy is the production of solar chemical fuels. A solar thermal reactor has been designed to experimentally investigate promising paths for reducing metal oxide particles to reduced oxidation states (e.g. Fe_2O_3 to Fe_3O_4) utilizing concentrated solar energy. This reactor is windowless, able to withstand temperatures in excess of 1700 K, and has a feed system with variable particle residence time. Furthermore, this reactor utilizes a universal instrumentation system. A large-scale metal oxide reactor would serve as the first step in a metal oxide solar chemical cycle for the production of hydrogen. This hydrogen would be used in fuel cells to generate electricity or as a base material for the production of more traditional hydrocarbon fuels.

Schematic of Valparaiso University's Solar Energy Research Facility

Metal Oxide Solar Chemical Cycle

- Concentrated solar heat reduces metal oxide particles
- Electrolysis utilizes electrical work to split water
- Reduced particles reduce the required cell potential
- At the anode, the particles are oxidized to their original form
- At the cathode, gaseous hydrogen is collected as a fuel

Diagram of a Metal Oxide Solar Chemical Cycle

The First Step in VU's Solar Hydrogen Process: Development of a Solar Thermal Reactor for the Reduction of Metal Oxide Particles

Fosheim, J., Baum, C., Borth, B., Gruenwald, B., Nasserifar, P., VanHeeren, G., Krueger, K.¹, Palumbo, R.¹ ¹Department of Mechanical Engineering, Valparaiso University

Project Scope

Design a reactor to facilitate the reduction of metal oxide particles This reactor:

- Utilizes concentrated solar energy
- Is windowless (open to air)
- Withstands temperatures up to 1700 K (2600 ^oF)
- Has a quasi-continuous feed system
- Has variable particle residence times
- Is compatible with particle sizes between 325 mesh and 1 mm
- Has a instrumentation system with graphical user interface

Cross Sectional View of the Solar Thermal Reactor

Reactor Components

1.	Stainless Steel Front Plate	7.	Mou
2.	Zirconia Felt Aperture	8.	Mou

- 3 Stainless Steel Shell
- Alumina Mat Insulation 4
- Stainless Steel Back Plate
- SiC Paddlewheel 6.
- VALPARAISO VUNIVERSITY ENGINEERING

- unting Bracket
- Mounting Table
- 9. Feed System Base
- 10. Metal Oxide Particle Hopper
- 11. Screw Feed Auger

Instrumentation System

Temperature Pressure Gas flow rate Water flow rate Analog Voltage 0-5 V 0-5 V Digital Pulse

Electrical Cabinet

LabVIEW Graphical User Interface

DISABLE cRIO	Communi	cation LED	
Temperature Measuren	nents		
T1	T5	T9	T13
23.8 C √	Open C ↓	Open C ⊤	Open C ⊂
K-Type ▼	K-Type ↓	K-Type ▼	S-Type ▼
T2	T6	T10	T14
Open C ↓	Open C √	Open C ⊤	Open C ⊤
K-Type ↓	K-Type ↓	K-Type ▼	S-Type ▼
T3	T7	T11	T15
Open C ⊤	Open C ⊤	Open C ⊤	Open C ⊤
K-Type ↓	K-Type ▼	K-Type ▼	S-Type ▼
T4	T8	T12	T16
Open C ⊤	Open C √	Open C ⊤	Open C ⊤
K-Type ▼	K-Type √	K-Type ▼	S-Type ▼
Water Flow Measureme	ent		
Water Flow Rate-1	Water Flow Rate-2	Water Flow Rate-3	
0.53 gpm	0 gpm	0 gpm	
Calibration File			
Calibration File	IO Measurment\Calibration	Coeff.xlsx 🔁	

Proceedings of the 2013 International Mechanical Engineering Congress & Exposition IMECE 2013 November 15-21, 2013, San Diego, CA USA DRAFT Paper # 67015

Solar Flux Feed System Motor Paddlewheel Motor Shaft Position

Digital Signal 0-24 VDC 0-24 VDC 0-5 V

1.	National Instruments CompactRIO
2.	Isothermal Thermocouple Module
3.	Brushed DC Servo Drive Module
4.	± 10 mA Current Input Module
5.	± 10 V Voltage Input Module
6.	24 V Digital Input Module
7.	± 10 V Voltage Output Module
8.	Terminal Blocks

