2 research outputs found

    Our current clinical understanding of Candida biofilms: where are we two decades on?

    Get PDF
    Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies

    Role of the dietary phytochemical curcumin in targeting cancer cell signalling pathways

    Get PDF
    The diarylheptanoid curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] is one of the phenolic pigments responsible for the yellow colour of turmeric (Curcuma longa L.). This phytochemical has gained a lot of attention in recent years due to its therapeutic potential in cancer. A range of drug delivery approaches have been developed to optimise the pharmacokinetic profile of curcumin and ensure that it reaches its target sites. Curcumin exhibits numerous biological effects, including anti-inflammatory, cardioprotective, antidiabetic, and anti-aging activity. It has also been extensively studied for its role as a cancer chemopreventive and anti-cancer agent. This review focusses on the role of curcumin in targeting the cell signalling pathways involved in cancer, particularly via modulation of growth factors, transcription factors, kinases and other enzymes, pro-inflammatory cytokines, pro-apoptotic and anti-apoptotic proteins. It is hoped that this study will help future work on the potential of curcumin to combat cancer
    corecore