199 research outputs found

    Airborne and ground based measurements of volatile organic compounds using proton transfer reaction mass spectrometry in Texas and Mexico City

    Get PDF
    Measurements of ambient volatile organic compounds (VOCs) by proton transfer reaction mass spectrometry (PTR-MS) are reported from recent airborne and surface based field campaigns. The Southeast Texas Tetroon Study (SETTS) was a project within the TEXAQS 2005 field campaign, conducting airborne measurements that investigated the nocturnal Lagrangian transport of industrial plumes downwind of the Houston, Texas metropolitan area. On the evening of July 26-27, a polluted air mass with elevated mass 43, mass 45 and mass 57 VOCs along with elevated O3, CO, and NOx was tracked from the Houston metropolitan area to an area northwest of Shreveport, LA, a distance of over 200 miles. This campaign demonstrated that the PTRMS is capable of tracking a VOC plume over large distances and these measurements indicate that transport of VOCs, particularly light alkenes and their oxidation products, out of the Houston metropolitan area may need to be considered by areas downwind of the Houston area when they are determining how to attain their air quality goals. During the MILAGRO field campaign in March 2006 VOCs were measured by PTR-MS instrumentation on a rooftop in the urban mixed residential and industrial area north northeast of downtown Mexico City. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations clearly show the influence of vehicular traffic during the morning rush hour time period and during the afternoon hours although a separate late afternoon peak is not seen. Plumes of toluene elevated as much as 216 parts per billion by volume (ppbv) and ethyl acetate elevated as much as 183 ppbv above background levels were observed during the late night and early morning hours. These plumes indicate the probability of significant industrial sources of these two compounds in the region. The high levels of toluene measured by our PTR-MS exceed levels that would be predicted by examination of the Mexico City Metropolitan Area (MCMA) emission inventory and when these VOC measurements are integrated with measurements conducted throughout the MCMA a better understanding of both the overall spatial pattern of VOCs in the MCMA as well as its variability will be attained

    In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry

    Get PDF
    The development of methods to produce nanoparticles with unique properties via the aerosol route is progressing rapidly. Typical characterization techniques extract particles from the synthesis process for subsequent offline analysis, which may alter the particle characteristics. In this work, we use laser-vaporization aerosol mass spectrometry (LV-AMS) with 70-eV electron ionization for real-time, in-situ nanoparticle characterization. The particle characteristics are examined for various aerosol synthesis methods, degrees of sintering, and for controlled condensation of organic material to simulate surface coating/functionalization. The LV-AMS is used to characterize several types of metal nanoparticles (Ag, Au, Pd, PdAg, Fe, Ni, and Cu). The degree of oxidation of the Fe and Ni nanoparticles is found to increase with increased sintering temperature, while the surface organic-impurity content of the metal particles decreases with increased sintering temperature. For aggregate metal particles, the organic-impurity content is found to be similar to that of a monolayer. By comparing different equivalent-diameter measurements, we demonstrate that the LV-AMS can be used in tandem with a differential mobility analyzer to determine the compactness of synthesized metal particles, both during sintering and during material addition for surface functionalization. Further, materials supplied to the particle production line downstream of the particle generators are found to reach the generators as contaminants. The capacity for such in-situ observations is important, as it facilitates rapid response to undesired behavior within the particle production process. This study demonstrates the utility of real-time, in-situ aerosol mass spectrometric measurements to characterize metal nanoparticles obtained directly from the synthesis process line, including their chemical composition, shape, and contamination, providing the potential for effective optimization of process operating parameters

    Overnight Atmospheric Transport and Chemical Processing of Photochemically Aged Houston Urban and Petrochemical Industrial Plume

    Get PDF
    Overnight atmospheric transport and chemical evolution of photochemically aged Houston urban and petrochemical industrial plume were investigated in July 2005. We report here on the 26 July episode in which the aged plume was tagged 1.5 h before sunset with a pair of free-floating controlled meteorological balloons, which guided quasi-Lagrangian aircraft sampling in the plume as it was advected 300 km to the north over 8 h. The aged plume around sunset was well mixed within a 1600 m residual layer, and was characterized by enhanced levels of aerosol, O3, CO, olefins, acetaldehyde, total odd nitrogen compounds (NOy), and relatively small amounts (\u3c1 \u3eppbv) of NO x. The plume experienced appreciable shearing overnight due to the development of a low-altitude nocturnal jet between 300 and 500 m above mean sea level (MSL). However, the plume above 600 m MSL remained largely undiluted even after 8 h of transport due to lack of turbulent mixing above the jet. About 40-60% of the NOx present in the aged plume around sunset was found to be depleted over this 8 h period. A constrained plume modeling analysis of the quasi-Lagrangian aircraft observations suggested that by dawn this NO x was converted to nitric acid, organic nitrates, and peroxy acyl nitrates via reactions of NO3 radicals with enhanced levels of olefins and aldehydes in the plume. Sensitivity of NOx depletion to heterogeneous hydrolysis of N2O5 on aerosols was examined. These results have significant implications for the impacts of urban and industrial pollution on far downwind regions

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    An examination of the local meteorology and chemical processes that lead to the simultaneous rise of ozone and fall of NOx in the morning.

    Full text link
    A better understanding of exactly what causes measured O3 mixing ratio increases in the mid-morning to early afternoon time period over rural northern Michigan was sought by this study. Four separate instances of increased O3 mixing ratios were examined in detail looking at a wide variety of meteorological and chemical variables. An attempt was made in all of these cases to determine the extent to which the mixing ratio increase could have been caused by photochemical production, boundary layer entrainment and/or horizontal advection. Examples of all three phenomenon were encountered. Meteorological parameters at the Program for Research on Oxidants, PHotochemistry, Emissions, and Transport (PROPHET) tower were compared with meteorological parameters at the UV-B site and were found to be similar. Mixed layer height determination made at the UV-B site were thus considered to be useful to examine O3 and NOx data collected at the PROPHET tower.http://deepblue.lib.umich.edu/bitstream/2027.42/54923/1/3364.pdfDescription of 3364.pdf : Access restricted to on-site users at the U-M Biological Station

    Development of Ion Drift-Chemical Ionization Mass Spectrometry

    No full text
    • 

    corecore