7,839 research outputs found

    Economic Evaluation of Computerized Structural Analysis

    Get PDF
    This completed effort involved a technical and economic study of the capabilities of computer programs in the area of structural analysis. The applicability of the programs to NASA projects and to other users was studied. The applications in other industries was explored including both research and development and applied areas. The costs of several alternative analysis programs were compared. A literature search covered applicable technical literature including journals, trade publications and books. In addition to the literature search, several commercial companies that have developed computerized structural analysis programs were contacted and their technical brochures reviewed. These programs include SDRC I-DEAS, MSC/NASTRAN, SCADA, SUPERSAP, NISA/DISPLAY, STAAD-III, MICAS, GTSTRUDL, and STARS. These programs were briefly reviewed as applicable to NASA projects

    Collider Constraints on Dipole-Interacting Dark Matter

    Full text link
    Dark matter which interacts through a magnetic or electric dipole moment is an interesting possibility which may help to resolve the discrepancy between the DAMA annual modulation signal and the null results of other searches. In this article we examine relic density and collider constraints on such dark matter, and find that for couplings needed to explain DAMA, the thermal relic density is generically in the right ballpark to account for cosmological measurements. Collider constraints are relevant for light WIMPs, but less constraining that direct searches for masses above about 10 GeV.Comment: 11 pages, 2 figures, extended discussion, added references, conclusion unchange

    VSAERO analysis of tip planforms for the free-tip rotor

    Get PDF
    The results of a numerical analysis of two interacting lifting surfaces separated in the spanwise direction by a narrow gap are presented. The configuration consists of a semispan wing with the last 32 percent of the span structurally separated from the inboard section. The angle of attack of the outboard section is set independently from that of the inboard section. In the present study, the three-dimensional panel code VSAERO is used to perform the analysis. Computed values of tip surface lift and pitching moment coefficients are correlated with experimental data to determine the proper approach to model the gap region between the surfaces. Pitching moment data for various tip planforms are also presented to show how the variation of tip pitching moment with angle of attack may be increased easily in incompressible flow. Calculated three-dimensional characteristics in compressible flow at Mach numbers of 0.5 and 0.7 are presented for new tip planform designs. An analysis of sectional aerodynamic center shift as a function of Mach number is also included for a representative tip planform. It is also shown that the induced drag of the tip surface is reduced for negative incidence angles relative to the inboard section. The results indicate that this local drag reduction overcomes the associated increase in wing induced drag at high wing lift coefficients

    Characters of graded parafermion conformal field theory

    Full text link
    The graded parafermion conformal field theory at level k is a close cousin of the much-studied Z_k parafermion model. Three character formulas for the graded parafermion theory are presented, one bosonic, one fermionic (both previously known) and one of spinon type (which is new). The main result of this paper is a proof of the equivalence of these three forms using q-series methods combined with the combinatorics of lattice paths. The pivotal step in our approach is the observation that the graded parafermion theory -- which is equivalent to the coset osp(1,2)_k/ u(1) -- can be factored as (osp(1,2)_k/ su(2)_k) x (su(2)_k/ u(1)), with the two cosets on the right equivalent to the minimal model M(k+2,2k+3) and the Z_k parafermion model, respectively. This factorisation allows for a new combinatorial description of the graded parafermion characters in terms of the one-dimensional configuration sums of the (k+1)-state Andrews--Baxter--Forrester model.Comment: 36 page

    Task-based Augmented Contour Trees with Fibonacci Heaps

    Full text link
    This paper presents a new algorithm for the fast, shared memory, multi-core computation of augmented contour trees on triangulations. In contrast to most existing parallel algorithms our technique computes augmented trees, enabling the full extent of contour tree based applications including data segmentation. Our approach completely revisits the traditional, sequential contour tree algorithm to re-formulate all the steps of the computation as a set of independent local tasks. This includes a new computation procedure based on Fibonacci heaps for the join and split trees, two intermediate data structures used to compute the contour tree, whose constructions are efficiently carried out concurrently thanks to the dynamic scheduling of task parallelism. We also introduce a new parallel algorithm for the combination of these two trees into the output global contour tree. Overall, this results in superior time performance in practice, both in sequential and in parallel thanks to the OpenMP task runtime. We report performance numbers that compare our approach to reference sequential and multi-threaded implementations for the computation of augmented merge and contour trees. These experiments demonstrate the run-time efficiency of our approach and its scalability on common workstations. We demonstrate the utility of our approach in data segmentation applications

    Neutron stars with hyperon cores: stellar radii and EOS near nuclear density

    Full text link
    The existence of 2 Msun pulsars puts very strong constraints on the equation of state (EOS) of neutron stars (NSs) with hyperon cores, which can be satisfied only by special models of hadronic matter. The radius-mass relation for these models is sufficiently specific that it could be subjected to an observational test with future X-ray observatories. We want to study the impact of the presence of hyperon cores on the radius-mass relation for NS. We aim to find out how, and for which particular stellar mass range, a specific relation R(M), where M is the gravitational mass, and R is the circumferential radius, is associated with the presence of a hyperon core. We consider a set of 14 theoretical EOS of dense matter, based on the relativistic mean-field (RMF) approximation, allowing for the presence of hyperons in NSs. We seek correlations between R(M) and the stiffness of the EOS below the hyperon threshold needed to pass the 2 Msun test. For NS masses 1.013km, because of a very stiff pre-hyperon segment of the EOS. At nuclear density, the pressure is significantly higher than a robust upper bound obtained recently using chiral effective field theory. If massive NSs do have a sizable hyperon core, then according to current models the radii for M=1.0-1.6 Msun are necessarily >13km. If, on the contrary, a NS with a radius R<12 km is observed in this mass domain, then sizable hyperon cores in NSs, as we model them now, are ruled out. Future X-ray missions with <5% precision for a simultaneous M and R measurement will have the potential to solve the problem with observations of NSs. Irrespective of this observational test, present EOS allowing for hyperons that fulfill condition M_max>2 Msun yield a pressure at nuclear density that is too high relative to up-to-date microscopic calculations of this quantity.Comment: 10 pages, 10 figures, published in A&

    Rotating neutron stars with exotic cores: masses, radii, stability

    Get PDF
    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716 Hz) and the maximum measured mass (2  M2\;M_\odot). Present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered.Comment: Matches published version. Minor modifications and reference adde
    corecore