12 research outputs found

    Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures

    Full text link
    Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n^11). Although we were able to reduce this to O(n^6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Allostery through protein-induced DNA bubbles

    No full text
    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription

    Histone fold modifications control nucleosome unwrapping and disassembly

    No full text
    Nucleosomes are stable DNA–histone protein complexes that must be unwrapped and disassembled for genome expression, replication, and repair. Histone posttranslational modifications (PTMs) are major regulatory factors of these nucleosome structural changes, but the molecular mechanisms associated with PTM function remains poorly understood. Here we demonstrate that histone PTMs within distinct structured regions of the nucleosome directly regulate the inherent dynamic properties of the nucleosome. Precise PTMs were introduced into nucleosomes by chemical ligation. Single molecule magnetic tweezers measurements determined that only PTMs near the nucleosome dyad increase the rate of histone release in unwrapped nucleosomes. In contrast, FRET and restriction enzyme analysis reveal that only PTMs throughout the DNA entry–exit region increase unwrapping and enhance transcription factor binding to nucleosomal DNA. These results demonstrate that PTMs in separate structural regions of the nucleosome control distinct dynamic events, where the dyad regulates disassembly while the DNA entry–exit region regulates unwrapping. These studies are consistent with the conclusion that histone PTMs may independently influence nucleosome dynamics and associated chromatin functions
    corecore