49 research outputs found

    B(E1) Strengths from Coulomb Excitation of 11Be

    Get PDF
    The BB(E1;1/2+→1/2−1/2^+\to1/2^-) strength for 11^{11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for 11^{11}Be+208^{208}Pb at 38.6 MeV/nucleon is reported. The BB(E1) strength of 0.105(12) e2^2fm2^2 derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e2^2fm2^2. This value is in good agreement with the value deduced independently from the lifetime of the 1/2−1/2^- state in 11^{11}Be, and has a comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.

    EDEN: a neutron time-of-flight multidetector for decay studies of giant states

    No full text
    A neutron time-of-flight multidetector has been built to study the decay of giant states. It is made of 40 individual detectors. A liquid scintillator is used for neutron-gamma-ray pulse shape discrimination. The overall efficiency of the multidetector (epsilonOMEGA/4pi) is 1% for 6 MeV neutrons and the energy resolution is about 60 keV and 500 keV for 1 MeV and 6 MeV neutrons respectively

    Proton decay following the transfer reaction (7^7Li,6^6He) on 40^{40}Ca and 90^{90}Zr

    No full text
    The charged particle decay of continuum states excited by the single proton stripping reaction (Li-7, He-6) at a bombarding energy of 50 MeV/nucleon on targets of Ca-40 and Zr-90 was measured and compared with theoretical predictions. The results suggest that most of the strength in the continuum arises from decay of unbound states in the intermediate nucleus rather than from breakup of the Li-7 projectile. There is substantial direct decay to the low-lying states in the final nucleus for both targets

    Optical-to-microwave frequency comparison with fractional uncertainty of 10(-15)

    No full text
    We report the technical aspects of the optical-to-microwave comparison for our recent measurements of the optical frequency of the mercury single-ion frequency standard in terms of the SI second as realized by the NIST-F1 cesium fountain clock. Over the course of six years, these measurements have resulted in a determination of the mercury single-ion frequency with a fractional uncertainty of less than 7x10(-16), making it the most accurately measured optical frequency to date. In this paper, we focus on the details of the comparison techniques used in the experiment and discuss the uncertainties associated with the optical-to-microwave synthesis based on a femtosecond laser frequency comb. We also present our most recent results in the context of the previous measurements of the mercury single-ion frequency and arrive at a final determination of the mercury single-ion optical frequency: f(Hg+)= 1064721 609 899 145.30(69) Hz
    corecore