48 research outputs found

    Factors influencing the production of recombinant SV40 vectors

    Get PDF
    Most gene therapy approaches employ viral vectors for gene delivery. Ideally, these vectors should be produced at high titer and purity with well-established protocols. Standardized methods to measure the quality of the vectors produced are imperative, as are techniques that allow reproducible quantitation of viral titer. We devised a series of protocols that achieve high-titer production and reproducible purification and provide for quality control and titering of recombinant simian virus 40 vectors (rSV40s). rSV40s are good candidate vehicles for gene transfer: they are easily modified to be nonreplicative and they are nonimmunogenic. Further, they infect a wide variety of cells and allow long-term transgene expression. We report here these protocols to produce rSV40 vectors in high yields, describe their purification, and characterize viral stocks using quality control techniques that monitor the presence of wild-type SV40 revertants and defective interfering particles. Several methods for reproducible titration of rSV40 viruses have been compared. We believe that these techniques can be widely applied to obtain high concentrations of high-quality rSV40 viruses reproducibly

    The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-ĪŗB and TGFĪ² pathways in hepatic stellate cells

    Get PDF
    Liver cirrhosis results from chronic hepatic damage and is characterized by derangement of the organ architecture with increased liver fibrogenesis and defective hepatocellular function. It frequently evolves into progressive hepatic insufficiency associated with high mortality unless liver transplantation is performed. We have hypothesized that the deficiency of critical nutrients such as essential omega-3 fatty acids might play a role in the progression of liver cirrhosis. Here we evaluated by LC-MS/MS the liver content of omega-3 docosahexaenoic fatty acid (DHA) in cirrhotic patients and investigated the effect of DHA in a murine model of liver injury and in the response of hepatic stellate cells (HSCs) (the main producers of collagen in the liver) to pro-fibrogenic stimuli. We found that cirrhotic livers exhibit a marked depletion of DHA and that this alteration correlates with the progression of the disease. Administration of DHA exerts potent anti-fibrogenic effects in an acute model of liver damage. Studies with HSCs show that DHA inhibits fibrogenesis more intensely than other omega-3 fatty acids. Data from expression arrays revealed that DHA blocks TGFĪ² and NF-ĪŗB pathways. Mechanistically, DHA decreases late, but not early, SMAD3 nuclear accumulation and inhibits p65/RelA-S536 phosphorylation, which is required for HSC survival. Notably, DHA increases ADRP expression, leading to the formation of typical quiescence-associated perinuclear lipid droplets. In conclusion, a marked depletion of DHA is present in the liver of patients with advanced cirrhosis. DHA displays anti-fibrogenic activities on HSCs targeting NF-ĪŗB and TGFĪ² pathways and inducing ADPR expression and quiescence in these cells

    Durable cytotoxic immune responses against gp120 elicited by recombinant SV40 vectors encoding HIV-1 gp120 +/- IL-15

    Get PDF
    BACKGROUND: A vaccine that elicits durable, powerful anti-HIV immunity remains an elusive goal. In these studies we tested whether multiple treatments with viral vector-delivered HIV envelope antigen (gp120), with and without IL-15, could help to approach that goal. For this purpose, we used recombinant Tag-deleted SV40-derived vectors (rSV40s), since they do not elicit neutralizing antibody responses, and so can be given multiply without loss of transduction efficiency. METHODS: SV(gp120) carried the coding sequences for HIV-1NL4-3 Env, and SV(mIL-15) carried the cDNA for mouse IL-15. Singly, and in combination, these two vectors were given monthly to BALB/cJ mice. Cytotoxic immunity and cytotoxic memory were tested in direct cytotoxicity assays using unselected effector cells. Antibody vs. gp120 was measured in a binding assay. In both cases, targets were P815 cells that were stably transfected with gp120. RESULTS: Multiple injections of SV(gp120) elicited powerful anti-gp120 cytolytic activity (>70% specific lysis) by unselected spleen cells. Cells from multiply-immunized mice that were rested 1 year after their last injections still showed >60% gp120-specific lysis. Anti-gp120 antibody was first detected after 2 monthly injections of SV(gp120) and remained elevated thereafter. Adding SV(mIL-15) to the immunization regimen dramatically accelerated the development of memory cytolytic responses, with >/= 50% specific lysis seen 1 month after two treatments. IL-15 did not alter the development of antibody responses. CONCLUSIONS: Thus, rSV40s encoding antigens and immunostimulatory cytokines may be useful tools for priming and/or boosting immune responses against HIV

    Requirements for gene silencing mediated by U1 snRNA binding to a target sequence

    Get PDF
    U1 interference (U1i) is a novel method to block gene expression. U1i requires expression of a 5ā€²-end-mutated U1 snRNA designed to base pair to the 3ā€²-terminal exon of the target gene's pre-mRNA that leads to inhibition of polyadenylation. Here, we show U1i is robust (ā‰„95%) and a 10-nt target length is sufficient for good silencing. Surprisingly, longer U1 snRNAs, which could increase annealing to the target, fail to improve silencing. Extensive mutagenesis of the 10-bp U1 snRNA:target duplex shows that any single mismatch different from GU at positions 3ā€“8, destroys silencing. However, mismatches within the other positions give partial silencing, suggesting that off-target inhibition could occur. The specificity of U1i may be enhanced, however, by the fact that silencing is impaired by RNA secondary structure or by splicing factors binding nearby, the latter mediated by Arginine-Serine (RS) domains. U1i inhibition can be reconstituted in vivo by tethering of RS domains of U1-70K and U2AF65. These results help to: (i) define good target sites for U1i; (ii) identify and understand natural cellular examples of U1i; (iii) clarify the contribution of hydrogen bonding to U1i and to U1 snRNP binding to 5ā€² splice sites and (iv) understand the mechanism of U1i

    Intratumoral injection of dendritic cells transduced by an SV40-based vector expressing interleukin-15 induces curative immunity mediated by CD8+ T lymphocytes and NK cells

    Get PDF
    Cancer immunotherapy has been extensively attempted by gene transfer of cytokines with viral vectors. In this work, we compared the therapeutic effects of interleukin 12 and 15 (IL-12 and IL-15) genes transferred to tumor cells or to dendritic cells (DCs), which were subsequently injected into established tumors. For this purpose, we used viral vectors based on simian virus 40 (rSV40). Importantly, we observed that nonmatured DCs infected with rSV40 vectors remained phenotypically immature. Infection of CT-26 tumor cells with rSV40 expressing IL-12 (rSVIL-12) or IL-15 (rSVIL-15) failed to inhibit tumor development. In contrast, the intratumoral administration of syngeneic DCs transduced with rSVIL-12 or rSVIL-15 was associated with a strong antitumor response; up to 40% tumor remissions were achieved with DCs transduced by rSVIL-12 and 73% with DCs expressing IL-15. This antitumor effect correlated with the in vivo priming of tumor-specific CD8+ T lymphocytes. Depletion studies showed that rSVIL-15-mediated antitumor efficacy was mediated mainly by CD8+ T lymphocytes and NK cells. We conclude that (i) SV40-derived vectors are an advantageous alternative to transduce genes into DCs and (ii) DCs transferred with IL-15 have an enhanced capability to induce curative antitumor immunity when injected into malignant lesions

    Adenovirus VA RNA-derived miRNAs target cellular genes involved in cell growth, gene expression and DNA repair

    Get PDF
    Adenovirus virus-associated (VA) RNAs are processed to functional viral miRNAs or mivaRNAs. mivaRNAs are important for virus production, suggesting that they may target cellular or viral genes that affect the virus cell cycle. To look for cellular targets of mivaRNAs, we first identified genes downregulated in the presence of VA RNAs by microarray analysis. These genes were then screened for mivaRNA target sites using several bioinformatic tools. The combination of microarray analysis and bioinformatics allowed us to select the splicing and translation regulator TIA-1 as a putative mivaRNA target. We show that TIA-1 is downregulated at mRNA and protein levels in infected cells expressing functional mivaRNAs and in transfected cells that express mivaRNAI-138, one of the most abundant adenoviral miRNAs. Also, reporter assays show that TIA-1 is downregulated directly by mivaRNAI-138. To determine whether mivaRNAs could target other cellular genes we analyzed 50 additional putative targets. Thirty of them were downregulated in infected or transfected cells expressing mivaRNAs. Some of these genes are important for cell growth, transcription, RNA metabolism and DNA repair. We believe that a mivaRNA-mediated fine tune of the expression of some of these genes could be important in adenovirus cell cycle

    In vitro and in vivo comparative study of chimeric liver-specific promoters

    Get PDF
    Targeting therapeutic genes to the liver is essential to improve gene therapy protocols of hepatic diseases and of some hereditary disorders. Transcriptional targeting can be achieved using liver-specific promoters. In this study we have made chimeric constructs combining promoter and enhancer regions of the albumin, alpha 1-antitrypsin, hepatitis B virus core protein, and hemopexin genes. Tissue specificity, activity, and length of gene expression driven from these chimeric regulatory sequences have been analyzed in cultured cells from hepatic and nonhepatic origin as well as in mice livers and other organs. We have identified a collection of liver-specific promoters whose activities range from twofold to less than 1% of the CMV promoter in human hepatoma cells. We found that the best liver specificity was attained when both enhancer and promoter sequences of hepatic genes were combined. In vivo studies were performed to analyze promoter function during a period of 50 days after gene transfer to the mouse liver. We found that among the various chimeric constructs tested in this work, the alpha1-antitrypsin promoter alone or linked to the albumin or hepatitis B enhancers is the most potent in directing stable gene expression in liver cells

    Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning

    Get PDF
    Ischemia-reperfusion (I/R) liver injury occurs when blood flow is restored after prolonged ischemia. A short interruption of blood flow (ischemic preconditioning [IP]) induces tolerance to subsequent prolonged ischemia through ill-defined mechanisms. Cardiotrophin (CT)-1, a cytokine of the interleukin-6 family, exerts hepatoprotective effects and activates key survival pathways like JAK/STAT3. Here we show that administration of CT-1 to rats or mice protects against I/R liver injury and that CT-1-deficient mice are exceedingly sensitive to this type of damage. IP markedly reduced transaminase levels and abrogated caspase-3 and c-Jun-NH2-terminal kinase activation after I/R in normal mice but not in CT-1-null mice. Moreover, the protective effect afforded by IP was reduced by previous administration of neutralizing anti-CT-1 antibody. Prominent STAT3 phosphorylation in liver tissue was observed after IP plus I/R in normal mice but not in CT-1-null mice. Oxidative stress, a process involved in IP-induced hepatoprotection, was found to stimulate CT-1 release from isolated hepatocytes. Interestingly, brief ischemia followed by short reperfusion caused mild serum transaminase elevation and strong STAT3 activation in normal and IL-6-deficient mice, but failed to activate STAT3 and provoked marked hypertransaminasemia in CT-1-null animals. In conclusion, CT-1 is an essential endogenous defense of the liver against I/R and is a key mediator of the protective effect induced by IP

    Methionine adenosyltransferase II beta subunit gene expression provides a proliferative advantage in human hepatoma

    Get PDF
    BACKGROUND & AIMS: Of the 2 genes (MAT1A, MAT2A) encoding methionine adenosyltransferase, the enzyme that synthesizes S-adenosylmethionine, MAT1A, is expressed in liver, whereas MAT2A is expressed in extrahepatic tissues. In liver, MAT2A expression associates with growth, dedifferentiation, and cancer. Here, we identified the beta subunit as a regulator of proliferation in human hepatoma cell lines. The beta subunit has been cloned and shown to lower the K(m) of methionine adenosyltransferase II alpha2 (the MAT2A product) for methionine and to render the enzyme more susceptible to S-adenosylmethionine inhibition. METHODS: Methionine adenosyltransferase II alpha2 and beta subunit expression was analyzed in human and rat liver and hepatoma cell lines and their interaction studied in HuH7 cells. beta Subunit expression was up- and down-regulated in human hepatoma cell lines and the effect on DNA synthesis determined. RESULTS: We found that beta subunit is expressed in rat extrahepatic tissues but not in normal liver. In human liver, beta subunit expression associates with cirrhosis and hepatoma. beta Subunit is expressed in most (HepG2, PLC, and Hep3B) but not all (HuH7) hepatoma cell lines. Transfection of beta subunit reduced S-adenosylmethionine content and stimulated DNA synthesis in HuH7 cells, whereas down-regulation of beta subunit expression diminished DNA synthesis in HepG2. The interaction between methionine adenosyltransferase II alpha2 and beta subunit was demonstrated in HuH7 cells. CONCLUSIONS: Our findings indicate that beta subunit associates with cirrhosis and cancer providing a proliferative advantage in hepatoma cells through its interaction with methionine adenosyltransferase II alpha2 and down-regulation of S-adenosylmethionine levels

    Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma

    Get PDF
    Artificially enforced expression of CD80 (B7-1) and CD86 (B7-2) on tumor cells renders them more immunogenic by triggering the CD28 receptor on T cells. The enigma is that such B7s interact with much higher affinity with CTLA-4 (CD152), an inhibitory receptor expressed by activated T cells. We show that unmutated CD80 is spontaneously expressed at low levels by mouse colon carcinoma cell lines and other transplantable tumor cell lines of various tissue origins. Silencing of CD80 by interfering RNA led to loss of tumorigenicity of CT26 colon carcinoma in immunocompetent mice, but not in immunodeficient Rag-/- mice. CT26 tumor cells bind CTLA-4Ig, but much more faintly with a similar CD28Ig chimeric protein, thus providing an explanation for the dominant inhibitory effects on tumor immunity displayed by CD80 at that expression level. Interestingly, CD80-negative tumor cell lines such as MC38 colon carcinoma and B16 melanoma express CD80 at dim levels during in vivo growth in syngeneic mice. Therefore, low CD80 surface expression seems to give an advantage to cancer cells against the immune system. Our findings are similar with the inhibitory role described for the dim CD80 expression on immature dendritic cells, providing an explanation for the low levels of CD80 expression described in various human malignancies
    corecore