84 research outputs found

    Mung Bean nuclease mapping of RNAs 3' end

    Get PDF
    A method is described that allows an accurate mapping of 3' ends of RNAs. In this method a labeled DNA probe, containing the presumed 3' end of the RNA under analysis is allowed to anneals to the RNA itself. Mung-bean nuclease is then used to digest single strands of both RNA and DNA. Electrophoretic fractionation of "protected" undigested, labeled DNA is than performed using a sequence reaction of a known DNA as length marker. This procedure was applied to the analysis of both a polyA RNA (Interleukin 10 mRNA) and non polyA RNAs (sea urchin 18S and 26S rRNAs). This method might be potentially relevant for the evaluation of the role of posttrascriptional control of IL-10 in the pathogenesis of the immune and inflammatory mediated diseases associated to ageing. This might allow to develop new strategies to approach to the diagnosis and therapy of age related diseases

    Analysis of polymorphisms Leiden Factor V G1691A and prothrombin G20210A as risk factors for acute myocardial infarction.

    Get PDF
    Thrombotic risk increases in elderly, therefore, the understanding of the genetic predisposition of hypercoagulability could make the difference in the prevention of venous and/or arterial thrombotic events. Laboratory evaluation of hyperfibrinogenemia, increased Factor VII levels, antiphospholipid antibodies presence and hyperhomocysteinemia are considered to have a consistent high predictivity for arterial thrombophilic diseases. Anyway, a large debate exists on the validity of testing Leiden Factor V (FV) G1691A and/or prothrombin (FII) G20210A polymorphisms in patients affected by arterial thrombotic diseases, despite of the several observations described. Here we report data strongly suggesting that at least the FII G20210A polymorphism might be considered an important risk factor for acute myocardial infarction in aged patients (55-80 years old). On the other hand, in spite of a not different genotypic and allelic distribution for the Leiden FV G1691A mutation, the presence of one or both the two polymorphisms is significantly higher among cases than in controls. In conclusion, our data suggest that FII G20210A and/or Leiden FV might be involved as risk factor for arterial disorders in about 5% of old subjects, justifying the opportunity of a genetic screening and an eventual preventive treatment, in particular in old subjects in which other and major risk factors, as hypertension and atherosclerosis, are detected

    Preliminary study of novel SRC tyrosine kinase inhibitor and proton therapy combined effect on glioblastoma multiforme cell line: In vitro evaluation of target therapy for the enhancement of protons effectiveness

    Get PDF
    The aim of this work was to evaluate proton therapy effectiveness in combination with a molecule SRC protein inhibitor for glioblastoma multiforme treatment. The role of this novel compound, Si306, is to interfere with glioblastoma carcinogenesis and progression, creating a radiosensitivity condition. The experiments were performed on U87 human glioblastoma multiforme cell line. Molecule concentrations of 10 μM and 20μM were tested in combination with proton irradiation doses of 2, 4, 10 and 21Gy. Cell survival evaluation was performed by clonogenic assay. The results showed that Si306 increases the efficacy of proton therapy reducing the surviving cells fraction significantly compared to treatment with protons only. These studies will support the preclinical phase realization, in order to evaluate proton therapy effects and molecularly targeted drug combined treatments

    Cytokine serum profile in a group of Sicilian Nonagenarians

    Get PDF
    The aim of our study was to evaluate the possibility of using multiplex analysis of the cytokine profile as a marker for successful aging by comparing cytokine plasmatic levels of a group of Sicilian nonagenarians with those of young controls. We analyzed a panel of 17 cytokines, comprehensive of haematopoietic factors T helper 1 (Th1), Th2, inflammation regulatory cytokines, and chemokines. The assay was carried out using the Luminex system. Interleukin (IL)-6 levels (p = 0.01) were increased in nonagenarians, whereas no modifications of other proinflammatory cytokines and chemokines were observed. Interferon-gamma (IFN-gamma) and IL-2 levels are unmodified, suggesting a substantial maintenance of relevant T cell functions. In addition, a significant increase of IL-12 serum levels in nonagenarians versus young controls that might be related to the increase of natural killer (NK) cell functions characterizing aging processes was observed. The analysis of Th2 cytokines show an increase of IL-13 and a reduction of IL-4 levels mirroring the maintenance of some effector's mechanisms of the immunoresponse in advanced ages. Our results suggest that the multiplex analysis of cytokine levels might be useful in defining a successful aging profile

    Relevance of gamma interferon, tumor necrosis factor alpha, and interleukin-10 gene polymorphisms to susceptibility to Mediterranean spotted fever.

    Get PDF
    The acute phase of Mediterranean spotted fever (MSF) is characterized by dramatic changes in cytokine production patterns, clearly indicating their role in the immunomodulation of the response against the microorganism, and the differences in cytokine production seem to influence the extent and severity of the disease. In this study, the single nucleotide polymorphisms (SNPs) of tumor necrosis factor alpha (TNF-α) -308G/A (rs1800629) and interleukin-10 (IL-10) -1087G/A (rs1800896), -824C/T (rs1800871), and -597C/A (rs1800872) and the gamma interferon (IFN-γ) T/A SNP at position +874 (rs2430561) were typed in 80 Sicilian patients affected by MSF and in 288 control subjects matched for age, gender, and geographic origin. No significant differences in TNF-α -308G/A genotype frequencies were observed. The +874TT genotype, associated with an increased production of IFN-γ, was found to be significantly less frequent in MSF patients than in the control group (odds ratio [OR], 0.18; 95% confidence interval [95% CI], 0.06 to 0.51; P corrected for the number of genotypes [Pc], 0.0021). In addition, when evaluating the IFN-γ and IL-10 genotype interaction, a significant increase of +874AA/-597CA (OR, 5.31; 95% CI, 2.37 to 11.88; Pc, 0.0027) combined genotypes was observed. In conclusion, our data strongly suggest that finely genetically tuned cytokine production may play a crucial role in the regulation of the immune response against rickettsial infection, therefore influencing the disease outcomes, ranging from nonapparent or subclinical condition to overt or fatal disease

    Proton-irradiated breast cells: molecular points of view

    Get PDF
    Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome

    Genetics of longevity. Data from the studies on Sicilian centenarians

    Get PDF
    The demographic and social changes of the past decades have determined improvements in public health and longevity. So, the number of centenarians is increasing as a worldwide phenomenon. Scientists have focused their attention on centenarians as optimal model to address the biological mechanisms of “successful and unsuccessful ageing”. They are equipped to reach the extreme limits of human life span and, most importantly, to show relatively good health, being able to perform their routine daily life and to escape fatal age-related diseases, such as cardiovascular diseases and cancer. Thus, particular attention has been centered on their genetic background and immune system. In this review, we report our data gathered for over 10 years in Sicilian centenarians. Based on results obtained, we suggest longevity as the result of an optimal performance of immune system and an overexpression of anti-inflammatory sequence variants of immune/inflammatory genes. However, as well known, genetic, epigenetic, stochastic and environmental factors seem to have a crucial role in ageing and longevity. Epigenetics is associated with ageing, as demonstrated in many studies. In particular, ageing is associated with a global loss of methylation state. Thus, the aim of future studies will be to analyze the weight of epigenetic changes in ageing and longevity

    Analysis of the role of elution buffers on the separation capabilities of dielectrophoretic devices

    Get PDF
    Field flow fractionation dielectrophoretic (FFF-DEP) devices are currently used, among the others, for the separation of tumor cells from healthy blood cells. To this end specific suspension/elution buffers (EBs), with reduced conductivity (with respect to that of the cell cytoplasm) are generally used. In this paper we investigate the long-term alterations of the cells and elution buffers. We find that the EB conductivity is critically modified within few minutes after cells suspension. In turn, this modification results in a change the ideal separation frequency of the FFF-DEP device. On the other hand we prove that DEP manipulation is preserved for more than three hours for cells suspended in the considered EBs. Keywords: Dielectrophoresis, Elution buffer, Circulating tumor cells, Cell motilit

    Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams

    Get PDF
    Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue
    corecore