11 research outputs found

    A Model for the Elasticity of Compressed Emulsions

    Full text link
    We present a new model to describe the unusual elastic properties of compressed emulsions. The response of a single droplet under compression is investigated numerically for different Wigner-Seitz cells. The response is softer than harmonic, and depends on the coordination number of the droplet. Using these results, we propose a new effective inter-droplet potential which is used to determine the elastic response of a monodisperse collection of disordered droplets as a function of volume fraction. Our results are in excellent agreement with recent experiments. This suggests that anharmonicity, together with disorder, are responsible for the quasi-linear increase of GG and Π\Pi observed at φc\varphi_c.Comment: RevTeX with psfig-included figures and a galley macr

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Carabid activity‐density increases with forest vegetation diversity at different spatial scales

    No full text
    More diverse forests are generally more resistant to insect herbivores. This might be due to positive effects of tree diversity on predation. Although the enemies hypothesis has received conflicting evidence in forest ecosystems. Carabids were sampled by pitfall trapping in a tree diversity experiment, at the centre of plots ranging from one to five tree species mixtures. The composition and vertical structure of the vegetation was assessed at three scales, in the understorey, in the canopy of the experimental plots, and in the surrounding area of each plot. None of the tested vegetation variables had an effect on the species richness of carabids. In contrast, the vegetation compositional diversity at the understorey, canopy and surrounding scales had additive and positive effects on the activity-density of the carabids. Our findings indicate that more diverse forests can host a higher activity-density of predatory carabids, as a result of the combined effect of horizontal and vertical vegetation diversity, which might increase both habitat quality and the amount of feeding resources. This highlights the relevance of manipulative tree diversity experiments to identify the ecological filters shaping local carabid communities

    Temperature and prey capture : opposite relationships in two predator taxa

    No full text
    1. All other things equal, predator capture rates are expected to depend on encounter rate with prey, prey escape capability (including prey defences), and on predator agility. Ectotherm predators and their prey both respond to increasing temperature by increased activity, i.e. predators increase their search area and prey may enhance their escape capability. This means that, as temperature changes, the ability of a predator to catch prey will decrease, increase, or remain unchanged depending on the relative effect of temperature on predator and prey. Their responses may further be differentially moulded by light conditions depending on whether the predator is diurnally or nocturnally active. It was hypothesised that flying Diptera are vulnerable to carabid beetles only at low temperatures and over the full temperature range for spiders because carabids, in contrast to spiders, are not built to catch swiftly moving prey. 2. The first experiment examined the spontaneous locomotor activity of the predators and of fruit flies at different temperatures (5, 10, 15, 20, 25, and 30 degrees C) and light conditions (light, dark). A second experiment examined the effect of temperature and light on the predation rate of two carabid beetles (Pterostichus versicolor and Calathus fuscipes) and two spiders (Clubiona phragmitis and Pardosa prativaga) using fruit flies (Drosophila melanogaster) as prey. 3. All four predators and the fruit fly increased their locomotory activity at higher temperatures. Activity of the carabid beetles peaked at intermediate temperatures; spiders and fruit flies were most active at the highest temperatures. Predation rate of the spiders increased with temperature whereas the beetles caught flies only at low temperatures (5 and 10 degrees C). 4. Diurnal variation in temperature may bring different prey groups within the set of potential prey at different times of the day or at different seasons. The ability of many carabid beetles to forage at low temperatures may have nutritional benefits and increases the diversity of interactions in terrestrial food webs

    Nonlinear modeling and simulation of tumor growth

    No full text

    Phase Behavior of Aqueous Na–K–Mg–Ca–Cl–NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    No full text
    corecore