2,356 research outputs found

    Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis

    Get PDF
    Background: Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/ cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections Results: Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applyingthe 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. Conclusions: The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS

    Draft Genome Sequence of anEnterobacterSpecies Associated with Illnesses and Powdered Infant Formula

    Get PDF
    This is the first report of the draft genome sequence of an Enterobacter species that may have been transmitted from powdered infant formula (PIF) to infants, resulting in illness. Enterobacter spp. are currently permitted in PIF, but the transmission of this strain indicates that the microbiological criteria for PIF may need revision

    Innervation of the canine thoracolumbar vertebral column

    Get PDF

    Application of RFID in the Prefabricated Timber Industry

    Full text link
    RFID (Radio Frequency Identification) has recently gained significant attention in various industries, whereby a common application of the technology is to gather and transmit real-time information related to inventory control and logistics. This paper develops the case for the use of RFID in the prefabricated timber industry by first examining its application in other industries. From there, the paper presents a framework for the adoption and testing of RFID within the prefabricated timber industry as a method to automate inventory control, logistics, and document control, while optimizing construction duration. The paper presents the methodology for field trials designed to determine potential for RFID applications in the prefabricated timber structure supply chain from raw material production to panel fabrication to shipping and onsite logistics and finally through to construction installation. The methodology will be tested in collaboration with industry partners and Forest and Wood Products Australia

    Genomic dissection of the 1994 Cronobacter sakazakii outbreak in a French neonatal intensive care unit

    Get PDF
    Background: Cronobacter sakazakii is a member of the genus Cronobacter that has frequently been isolated from powdered infant formula (PIF) and linked with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis. The Cronobacter MLST scheme has reported over 400 sequence types and 42 clonal complexes; however C. sakazakii clonal complex 4 (CC4) has been linked strongly with neonatal infections, especially meningitis. There have been a number of reported Cronobacter outbreaks over the last three decades. The largest outbreak of C. sakazakii was in a neonatal intensive care unit (NICU) in France (1994) that lasted over 3 months and claimed the lives of three neonates. The present study used whole genome sequencing data of 26 isolates obtained from this outbreak to reveal their relatedness. This study is first of its kind to use whole genome sequencing data to analyse a Cronobacter outbreak. Methods: Whole genome sequencing data was generated for 26 C. sakazakii isolates on the Illumina MiSeq platform. The whole genome phylogeny was determined using Mugsy and RaxML. SNP calls were determined using SMALT and SAMtools, and filtered using VCFtools. Results: The whole genome phylogeny suggested 3 distant clusters of C. sakazakii isolates were associated with the outbreak. SNP typing and phylogeny indicate the source of the C. sakazakii could have been from extrinsic contamination of reconstituted infant formula from the NICU environment and personnel. This pool of strains would have contributed to the prolonged duration of the outbreak, which was up to 3 months. Furthermore 3 neonates were co-infected with C. sakazakii from two different genotype clusters. Conclusion: The genomic investigation revealed the outbreak consisted of an heterogeneous population of C. sakazakii isolates. The source of the outbreak was not identified, but probably was due to environmental and personnel reservoirs resulting in extrinsic contamination of the neonatal feeds. It also indicated that C. sakazakii isolates from different genotype clusters have the ability to co-infect neonates

    Draft genome sequence of "Candidatus Cronobacter colletis" NCTC 14934T, a new species in the genus Cronobacter

    Get PDF
    Members of the Cronobacter genus are associated with serious infections in neonates. This is the first report of the draft genome sequence for the newly proposed species Cronobacter colletis

    Draft genome sequences of three newly identified species in the genus Cronobacter, C. helveticus LMG23732T, C. pulveris LMG24059, and C. zurichensis LMG23730T

    Get PDF
    Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis are newly described species in the Cronobacter genus, which is associated with serious infections of neonates. This is the first report of draft genome sequences for these species

    Draft genome sequence of the earliest Cronobacter sakazakii sequence type 4 strain, NCIMB 8272

    Get PDF
    The Cronobacter sakazakii clonal lineage defined as sequence type 4 (ST4) is associated with severe cases of neonatal meningitis and persistence in powdered infant formula. For genome sequencing of the earliest deposited culture collection strain of Cronobacter sakazakii ST4, we used the strain NCIMB 8272, originally isolated from milk powder in 1950
    corecore